【大模型LLM】 Agent 架构图解

引言

随着大型语言模型(LLM)的快速发展,其能力已从单纯的文本生成扩展到复杂任务的自主执行。基于 LLM 的 Agent 架构通过将语言模型与任务规划、工具调用、记忆管理等模块结合,构建了具备目标导向、动态决策能力的智能系统。本文将从架构设计、核心模块、关键技术及实践案例四个维度展开,结合最新研究成果,解析 LLM 驱动的 Agent 架构原理与实现。

一、核心架构解析

基于 LLM 的 Agent 架构通常包含以下核心模块:

  1. 控制中枢(Brain)

    • 任务规划器:将用户指令分解为子任务序列,支持单路径推理(如 ReAct)和多路径探索(如 Tree-of-Thought)。例如,处理 “分析 2024 年全球经济趋势” 任务时,规划器会生成 “收集宏观经济数据→识别关键指标→对比历史趋势→预测未来走向” 的步骤链。
    • 工具调用器:动态决定是否调用外部工具(如搜索引擎、数据库、API),并解析工具返回结果。例如,当 LLM 需要实时数据时,调用器会触发 Google 搜索或财经 API。
    • 反馈机制:通过强化学习(RL)或人类反馈(RLHF)优化决策策略。例如,在客服场景中,根据用户满意度评分调整话术生成逻辑。
  2. 感知与行动(Perception & Action)

    • 输入解析:将自然语言、图像、语音等多模态输入转换为 LLM 可处理的向量表示。例如,结合 CLIP 模型处理图像描述。
    • 输出执行:调用外部工具或执行物理动作(如机器人控制)。例如,通过 RPA 技术自动填写表单或发送邮件。
  3. 记忆系统(Memory)

    • 短期记忆:存储当前对话上下文和任务执行状态,支持上下文窗口扩展(如 Longformer 模型)。
    • 长期记忆:通过向量数据库(如 Chroma)存储历史交互数据,用于个性化响应。例如,在电商场景中,根据用户购买历史推荐商品。
  4. 安全控制(Security)

    • 输入过滤:使用正则表达式或关键词黑名单拦截恶意请求(如钓鱼攻击)。
    • 输出审查:通过内容检测模型(如 OpenAI Moderation API)过滤敏感信息。
    • 权限管理:限制工具调用范围(如禁止访问银行账户 API)。
二、关键技术突破
  1. 任务分解与规划

    • 分解优先方法:如 HuggingGPT 将任务拆解为子任务链,依次调用专用模型(如 OCR、翻译)。
    • 交错分解方法:如 ReAct 交替进行推理(思考步骤)和行动(工具调用),动态调整任务路径。
  2. 多模态能力增强

    • 视觉 - 语言融合:通过 BLIP-2 模型实现图像描述生成,支持 “描述图片内容并分析其情感倾向” 的复合任务。
    • 语音交互:结合 Whisper 进行语音识别,TTS 模型生成回复,实现全语音 Agent。
  3. 工具集成与扩展

    • LangChain 框架:提供标准化工具接口,支持快速集成搜索引擎、数据库等外部资源。例如,使用SearchTool获取实时天气数据。
    • 自定义工具开发:通过 Python 函数封装业务逻辑,如调用内部风控系统 API 进行信用评估。
  4. 安全与伦理保障

    • 对抗性训练:通过注入对抗样本(如 prompt 注入攻击)增强模型鲁棒性。
    • 可解释性增强:使用 SHAP 值分析决策依据,提高模型透明度。
三、典型架构对比
架构类型代表框架核心特点适用场景
单智能体AutoGPT单线程执行,依赖长上下文记忆简单任务自动化(如文件整理)
多智能体MetaGPT分工协作,减少上下文依赖复杂项目管理(如软件开发)
符号 - 神经混合LLM+PDDL结合符号推理与神经模型逻辑推理任务(如数学证明)
强化学习驱动Pangu-Agent结构化推理与 RL 微调结合动态环境交互(如机器人控制)
四、实践案例
  1. 智能客服系统

    • 架构图

    • 流程:用户咨询 “订单状态”→LLM 解析意图→调用工单系统 API→整合结果生成回复。
  2. 数据分析助手

    • 架构图

    • 流程:用户提问 “2024 年 Q1 销售额趋势”→LLM 生成 SQL→查询数据库→生成折线图并分析。

五、挑战与未来方向

  1. 当前挑战

    • 长期依赖处理:LLM 上下文窗口限制(如 GPT-4 仅支持 32k tokens)影响复杂任务执行。
    • 工具调用效率:频繁 API 调用导致延迟增加,需优化决策逻辑减少不必要调用。
    • 安全漏洞:prompt 注入攻击可能绕过安全控制,需加强输入验证。
  2. 未来方向

    • 多智能体协作:如 AutoGen 框架通过多角色对话提升任务完成效率。
    • 具身智能:结合机器人控制实现物理世界交互(如 SMART-LLM 多机器人任务规划)。
    • 自主学习:通过强化学习实现策略迭代优化(如 Pangu-Agent 的 RLFT)。
六、总结

基于 LLM 的 Agent 架构通过整合语言模型、任务规划、工具调用与记忆管理,构建了具备自主决策能力的智能系统。随着技术发展,其应用场景将从简单自动化扩展到复杂业务流程与物理世界交互。开发者需关注架构设计的灵活性、工具集成的高效性及安全机制的完善性,以充分释放 LLM 的潜力。

Action模块解析主流的另外一种Agent架构?案例分析:华为诺亚的盘古Agent主流的多智能体有哪些?【本文摘录自清华大学出版社:《深度学习和大模型原理与实践》】,各网站有销售,京东地址:https://item.jd.com/10130571131098.html研究内容:基于大型语言模型(LLM)的Agent架构Agent定义Agent是什么?Agent是一种能够自主决策、采取行动以达到某种目标的实体。AI Agent的确定义:基于人工智能(尤其是大模型)技术,能够感知和理解环境,并采取行动以完成目标的智能实体。Agent能干什么?AI Agent 主要依托LLM模型和具体的业务场景来调用相应的工具来完成任务目标,智能化程度和行业贴合度会更明显。典型案例有什么?智能核保应用,如果解决方案搭载AI Agent能力,Agent具体工作:1)能自动识别业务需求,调用OCR信息抽取和结构化管理;2)构建核保决策模型;3)联合出保及费率管理等模块,快速完成核保目标。Agent大模型LLM有什么关系?对于大模型AI Agent 的关系,说法有很多,但总结下来我们可以得出三点:1)AI Agent大模型技术为驱动,大模型AI Agent 为业务触手。2)不同的大模型应用行业应用,往往会催生不同的AI Agent。3)两者相辅相成、相得益彰,共同拓展着AI的应用边界和通用能力。总结,大模型 + 插件 + 执行流程 = Agent图解如下: 论文地址:https://browse.arxiv.org/pdf/2308.11432.pdfA Survey on Large Language Model based Autonomous Agents本论文的Agent一种架构是什么?
最新发布
03-09
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值