时序数据异常点检测技术

本文介绍了时序数据异常检测技术,包括基于统计模型、邻近度和密度的检测方法。详细讨论了一元和多元正态分布检测、马氏距离、KNN、逆距离、半径个数和相对密度等,并解释了独立森林Isolation Forest的工作原理及其在异常检测中的应用。
摘要由CSDN通过智能技术生成

©作者 | 曲奇

01 概述

通常时序数据的异常值主要分为三类:

02 时序数据常用特征

时序数据常见特征

特征

描述

周期 (频率)

数据出现周而复始的现象

趋势

数据呈现上涨、下跌的走势

季节性

在一年或者更短的时期内在一个趋势线上重复性和可预测的变动

自相关

代表数据之间的相关依赖

非线性

时间序列中包含了非线性模型表示的复杂数据集

偏态

测量对称性,或更加明确地说,缺乏对称性

峰度

如果数据相对于正常分布达到峰值或平坦,则采取措施

林中小丘

衡量时间序列的长期记忆

李亚普诺夫指数

衡量附近轨迹的发散速度

用于建模实验

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

数据分析案例

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值