【集合论】卡氏积 ( 卡氏积概念 | 卡氏积示例 | 卡氏积性质 | 非交换性 | 非结合性 | 分配律 | 有序对为空 | n 维卡氏积 | n 维卡氏积个数 | n维卡氏积性质 )

34 篇文章 99 订阅



前置博客 : 【集合论】有序对 ( 有序对 | 有序三元组 | 有序 n 元祖 )





一、 卡氏积



卡氏积 : A , B A , B A,B 是两个集合 , A A A 集合中的元素作为第一个元素 , B B B 集合中的元素作为第二个元素 , 符合上述条件的有序对组成的集合 , 称为集合 A A A B B B 的卡氏积 ;

记作 : A × B A \times B A×B

符号化表示 : A × B = { < x , y > ∣ x ∈ A ∧ y ∈ B } A \times B = \{ <x, y> | x \in A \land y \in B \} A×B={<x,y>xAyB}


集合 A A A 与 集合 B B B 的 卡氏积 是一个 新的集合 , 这个新集合是一个 有序对集合 ;





二、 卡氏积示例



集合 A = { ∅ , a } A = \{ \varnothing , a \} A={,a} , 集合 B = { 1 , 2 , 3 } B = \{ 1, 2, 3 \} B={1,2,3}


A × B = { < ∅ , 1 > , < ∅ , 2 > , < ∅ , 3 > , < a , 1 > , < a , 2 > , < a , 3 > } A \times B = \{ <\varnothing , 1> , <\varnothing , 2>, <\varnothing , 3>, <a, 1> , <a, 2> , <a , 3> \} A×B={<,1>,<,2>,<,3>,<a,1>,<a,2>,<a,3>}

每个有序对 第一个元素来自 A A A 集合 , 第二个元素来自 B B B 集合 ;


B × A = { < 1 , ∅ > , < 2 , ∅ > , < 3 , ∅ > , < 1 , a > , < 2 , a > , < 3 , a > } B \times A = \{ <1, \varnothing > , <2, \varnothing >, <3 , \varnothing >, <1, a> , <2, a> , <3, a> \} B×A={<1,>,<2,>,<3,>,<1,a>,<2,a>,<3,a>}

每个有序对第一个元素来自 B B B 集合 , 第二个元素来自 A A A 集合 ;


A × A = { < ∅ , ∅ > , < ∅ , a > , < a , ∅ > , < a , a > } A \times A = \{< \varnothing, \varnothing> , <\varnothing, a> , <a, \varnothing> , <a, a> \} A×A={<,>,<,a>,<a,>,<a,a>}

每个有序对第一个元素来自 A A A 集合 , 第二个元素来自 A A A 集合 ;


B × B = { < 1 , 1 > , < 1 , 2 > , < 1 , 3 > , < 2 , 1 > , < 2 , 2 > , < 2 , 3 > , < 3 , 1 > , < 3 , 2 > , < 3 , 3 > } B \times B = \{ <1, 1> , <1, 2> , <1, 3> , <2, 1> , <2, 2> , <2,3> , <3,1> , <3,2> , <3,3> \} B×B={<1,1>,<1,2>,<1,3>,<2,1>,<2,2>,<2,3>,<3,1>,<3,2>,<3,3>}

每个有序对第一个元素来自 B B B 集合 , 第二个元素来自 B B B 集合 ;





三、 卡氏积性质



1. 非交换性

A × B ≠ B × A A \times B \not= B \times A A×B=B×A

有三种特殊情况 , 交换性成立

A = B A = B A=B

A = ∅ A = \varnothing A=

B = ∅ B = \varnothing B=


2. 非结合性

( A × B ) × C ≠ A × ( B × C ) ( A \times B ) \times C \not= A \times ( B \times C) (A×B)×C=A×(B×C)

有三种特殊情况 , 结合性成立

A = ∅ A = \varnothing A=

B = ∅ B = \varnothing B=

C = ∅ C = \varnothing C=


3. 分配率

A × ( B ∪ C ) = ( A × B ) ∪ ( A × C ) A \times ( B \cup C ) = (A \times B) \cup (A \times C) A×(BC)=(A×B)(A×C)


4. 有序对为空的情况

A × B = ∅ ⇔ A = ∅ ∨ B = ∅ A \times B = \varnothing \Leftrightarrow A = \varnothing \lor B= \varnothing A×B=A=B=





四、 n 维卡氏积



n 维卡氏积 :

A 1 × A 2 × ⋯ × A n = { < x 1 , x 2 , ⋯   , x n > ∣ x 1 ∈ A 1 ∧ x 2 ∈ A 2 ∧ ⋯ ∧ x n ∈ A n } A_1 \times A_2 \times \cdots \times A_n = \{ <x_1 , x_2, \cdots , x_n> | x_1 \in A_1 \land x_2 \in A_2 \land \cdots \land x_n \in A_n \} A1×A2××An={<x1,x2,,xn>x1A1x2A2xnAn}


n n n 个集合的卡氏积 , n n n 维卡氏积结果 , 每个有序对有 n n n 个元素 , 每个元素都分别 按照指定顺序 来自这 n n n 个集合 ;


A n = A × A × ⋯ × A ⏟ n 个 A^n = \begin{matrix} \underbrace{ A \times A \times \cdots \times A } \\ n 个\end{matrix} An= A×A××An

这是 n n n 个 集合 A A A n n n 维卡氏积 ;





五、 n 维卡氏积个数



n n n 维卡氏积个数 :

∣ A i ∣ = n i   ,   i = 1 , 2 , ⋯   , n |A_i| = n_i \ , \ i = 1, 2, \cdots , n Ai=ni , i=1,2,,n

⇒ \Rightarrow

∣ A 1 × A 2 × ⋯ × A n ∣ = n 1 × n 2 × ⋯ × n n | A_1 \times A_2 \times \cdots \times A_n | = n_1 \times n_2 \times \cdots \times n_n A1×A2××An=n1×n2××nn


∣ A i ∣ = n i |A_i| = n_i Ai=ni , i = 1 , 2 , ⋯   , n i = 1, 2, \cdots , n i=1,2,,n : 表示 第 i i i 个集合 A i A_i Ai 的元素个数是 n i n_i ni ;

∣ A 1 × A 2 × ⋯ × A n ∣ | A_1 \times A_2 \times \cdots \times A_n | A1×A2××An : 表示 n n n 个集合的卡氏积结果集合个数 ;

n 1 × n 2 × ⋯ × n n n_1 \times n_2 \times \cdots \times n_n n1×n2××nn : n n n 个集合的卡氏积结果 ;





六、 n 维卡氏积性质



n 维卡氏积性质 : 与 2 2 2 维卡氏积性质类似

  • 7
    点赞
  • 20
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值