一、傅里叶变换线时移性质
傅里叶变换时移性质 :
序列信号 在 " 时间 " 上 , 进行一系列 " 平移 " 之后 ,
平移 只是影响 序列信号傅里叶变换 的 " 相频特性 " ,
平移 没有影响 序列信号傅里叶变换 的 " 幅频特性 " ;
x ( n ) x(n) x(n) 序列 线性移位 − n 0 -n_0 −n0 后 为 x ( n − n 0 ) x(n - n_0) x(n−n0) ,
x ( n − n 0 ) x(n - n_0) x(n−n0) 序列的 傅里叶变换 S F T [ x ( n − n 0 ) ] SFT[x(n - n_0)] SFT[x(n−n0)] 是
原来的 x ( n ) x(n) x(n) 序列 的 傅里叶变换 S F T [ x ( n ) ] SFT[x(n)] SFT[x(n)] 乘以 e − j ω n 0 e^{-j \omega n_0} e−jωn0 ;
使用公式表示为 :
S F T [ x ( n − n 0 ) ] = e − j ω n 0 X ( e j ω ) SFT[x(n - n_0)] = e^{-j \omega n_0} X(e^{j \omega}) SFT[x(n−n0)]=e−jωn0X(ejω)
二、傅里叶变换线时移性质示例
已知序列
x 1 ( n ) = { 1 , 2 , 3 , 4 , 5 , 6 , 7 , 8 , 9 , 9 , 8 , 7 , 6 , 5 , 4 , 3 , 2 , 1 } x_1(n)=\{1,2,3,4,5,6,7,8,9,9,8,7,6,5,4,3,2,1\} x1(n)={1,2,3,4,5,6,7,8,9,9,8,7,6,5,4,3,2,1}
x 2 ( n ) x_2(n) x2(n) 序列 是 x 1 ( n ) x_1(n) x1(n) 序列 向右移动 12 12 12 个单位
x 2 ( n ) = x 1 ( n − 12 ) x_2(n) = x_1(n - 12) x2(n)=x1(n−12)
序列向左移 加 , 序列向右移 减 ;
x 1 ( n ) = { 1 , 2 , 3 , 4 , 5 , 6 , 7 , 8 , 9 , 9 , 8 , 7 , 6 , 5 , 4 , 3 , 2 , 1 } x_1(n)=\{1,2,3,4,5,6,7,8,9,9,8,7,6,5,4,3,2,1\} x1(n)={1,2,3,4,5,6,7,8,9,9,8,7,6,5,4,3,2,1} 序列的 " 幅频特性 " , 即 x 1 ( n ) x_1(n) x1(n) 的傅里叶变换取模 :
∣ X 1 ( e j ω ) ∣ |X_1(e^{j\omega})| ∣X1(ejω)∣
如下图所示 :
x 2 ( n ) x_2(n) x2(n) 序列的 " 幅频特性 " , 即 x 2 ( n ) x_2(n) x2(n) 的傅里叶变换取模 :
∣ X 2 ( e j ω ) ∣ |X_2(e^{j\omega})| ∣X2(ejω)∣
如下图所示 :
x 1 ( n ) x_1(n) x1(n) 和 x 2 ( n ) x_2(n) x2(n) 幅频特性 没有改变 ;
但是 " 相频特性 " 改变了 , x 1 ( n ) x_1(n) x1(n) 序列的 " 相频特性 " 如下 :
x 2 ( n ) x_2(n) x2(n) 序列的 " 相频特性 " 如下 :