【数字信号处理】傅里叶变换性质 ( 傅里叶变换时移性质示例 )





一、傅里叶变换线时移性质



傅里叶变换时移性质 :

序列信号 在 " 时间 " 上 , 进行一系列 " 平移 " 之后 ,

平移 只是影响 序列信号傅里叶变换 " 相频特性 " ,

平移 没有影响 序列信号傅里叶变换 " 幅频特性 " ;


x ( n ) x(n) x(n) 序列 线性移位 − n 0 -n_0 n0 x ( n − n 0 ) x(n - n_0) x(nn0) ,

x ( n − n 0 ) x(n - n_0) x(nn0) 序列的 傅里叶变换 S F T [ x ( n − n 0 ) ] SFT[x(n - n_0)] SFT[x(nn0)]

原来的 x ( n ) x(n) x(n) 序列 的 傅里叶变换 S F T [ x ( n ) ] SFT[x(n)] SFT[x(n)] 乘以 e − j ω n 0 e^{-j \omega n_0} ejωn0 ;


使用公式表示为 :

S F T [ x ( n − n 0 ) ] = e − j ω n 0 X ( e j ω ) SFT[x(n - n_0)] = e^{-j \omega n_0} X(e^{j \omega}) SFT[x(nn0)]=ejωn0X(ejω)





二、傅里叶变换线时移性质示例



已知序列

x 1 ( n ) = { 1 , 2 , 3 , 4 , 5 , 6 , 7 , 8 , 9 , 9 , 8 , 7 , 6 , 5 , 4 , 3 , 2 , 1 } x_1(n)=\{1,2,3,4,5,6,7,8,9,9,8,7,6,5,4,3,2,1\} x1(n)={1,2,3,4,5,6,7,8,9,9,8,7,6,5,4,3,2,1}

x 2 ( n ) x_2(n) x2(n) 序列 是 x 1 ( n ) x_1(n) x1(n) 序列 向右移动 12 12 12 个单位

x 2 ( n ) = x 1 ( n − 12 ) x_2(n) = x_1(n - 12) x2(n)=x1(n12)


序列向左移 加 , 序列向右移 减 ;



x 1 ( n ) = { 1 , 2 , 3 , 4 , 5 , 6 , 7 , 8 , 9 , 9 , 8 , 7 , 6 , 5 , 4 , 3 , 2 , 1 } x_1(n)=\{1,2,3,4,5,6,7,8,9,9,8,7,6,5,4,3,2,1\} x1(n)={1,2,3,4,5,6,7,8,9,9,8,7,6,5,4,3,2,1} 序列的 " 幅频特性 " , 即 x 1 ( n ) x_1(n) x1(n) 的傅里叶变换取模 :

∣ X 1 ( e j ω ) ∣ |X_1(e^{j\omega})| X1(ejω)

如下图所示 :

在这里插入图片描述



x 2 ( n ) x_2(n) x2(n) 序列的 " 幅频特性 " , 即 x 2 ( n ) x_2(n) x2(n) 的傅里叶变换取模 :

∣ X 2 ( e j ω ) ∣ |X_2(e^{j\omega})| X2(ejω)

如下图所示 :

在这里插入图片描述


x 1 ( n ) x_1(n) x1(n) x 2 ( n ) x_2(n) x2(n) 幅频特性 没有改变 ;

但是 " 相频特性 " 改变了 , x 1 ( n ) x_1(n) x1(n) 序列的 " 相频特性 " 如下 :

在这里插入图片描述

x 2 ( n ) x_2(n) x2(n) 序列的 " 相频特性 " 如下 :

在这里插入图片描述

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值