pymilvus创建IVF_SQ8向量索引

索引简介

索引的作用是加速大型数据集上的查询。

目前,向量字段仅支持一种索引类型,即只能创建一个索引。

milvus支持的向量索引类型大部分使用近似最近邻搜索算法(ANNS,approximate nearest neighbors search) 。ANNS 的核心思想不再局限于返回最准确的结果,而是仅搜索目标的邻居。 ANNS 通过在可接受的范围内牺牲准确性来提高检索效率。

IVF_SQ8索引

由于IVF_FLAT未对原始的向量数据做任何压缩,IVF_FLAT索引文件的大小与原始数据文件大小相当。例如sift-1b数据集原始数据文件的大小为476GB,生成的IVFFLAT索引文件大小有470GB左右,若将全部索引文件加载进内存,就需要470GB的内存资源。

当磁盘或内存、显存资源有限时,IVFSQ8是一个更好的选择。它通过对向量进行标量量化(Scalar Quantization),能把原始向量中每个FLOAT(4字节)转为UINT8(1字节),从而可以把磁盘及内存、显存资源的消耗量减少70% ~ 75%。同样以sift-1b数据集为例,生成的IVFSQ8索引文件只有140GB。

优点:查询速度快,资源占用仅为IVFFLAT的1/4~1/3

缺点:查询召回率比IVFFLAT低

索引构建参数:

nlist:集群单元数量

使用attu创建IVF_SQ8索引

在这里插入图片描述

在这里插入图片描述

使用pymilvus创建IVF_SQ8索引

from pymilvus import (
    connections,
    Collection,
)

collection_name = "hello_milvus"
host = "192.168.230.71"
port = 19530
username = ""
password = ""

print("start connecting to Milvus")
connections.connect("default", host=host, port=port,user=username,password=password)

coll = Collection(collection_name, consistency_level="Bounded",shards_num=1)

print("Start creating index")
index_params = {
    "index_type": "IVF_SQ8",
    "metric_type": "L2",
    "params": {
        "nlist": 64
    }
}

coll.create_index(
  field_name="embeddings",
  index_params=index_params,
  index_name="idx_em"
)

print("done")
<think>好的,我现在需要帮助用户了解如何在Milvus中创建和使用索引。首先,我要回顾一下用户提供的引用内容,确保准确引用相关信息。 根据引用[2],创建索引的步骤包括定义索引参数,比如metric_type、index_type和params,然后调用create_index方法。用户可能需要具体的代码示例,所以应该展示一个Python的例子,像用户提供的代码那样。 然后,引用[1]提到Milvus支持多种索引类型,如IVF_FLAT、IVF_SQ8等,所以需要解释这些类型的不同适用场景。比如,IVF_FLAT适合高精度搜索,而IVF_SQ8可以减少内存占用。 引用[3]指出标量字段的索引是自动创建的,用户可能想知道是否需要手动处理这些。需要说明标量字段和向量字段的不同处理方式,自动和手动的区别。 引用[4]提到Milvus基于FAISS、Hnswlib等库,可能需要简要说明这些库与索引类型的关系,但用户的问题集中在创建和使用步骤,这部分可能不需要深入。 接下来,用户的问题是如何创建和使用索引,所以步骤需要清晰。首先确保数据已插入,然后创建索引,最后在搜索时指定参数。可能遇到的问题包括数据未加载,需要引用[2]中的提示。 另外,用户可能关心不同索引类型的选择,比如IVF和HNSW的区别,以及参数设置的影响,如nlist和ef的值如何影响性能。需要解释这些参数的作用,但保持简洁。 还需要注意代码的正确性,比如index_params的结构,以及如何调用create_index。同时,在搜索时,不同的索引类型需要不同的搜索参数,比如IVF_FLAT需要nprobe,而HNSW需要ef。 最后,生成相关问题时要覆盖常见疑问,比如索引类型选择、性能优化、标量字段处理等,帮助用户进一步学习。</think>### 如何在Milvus中创建和使用索引 #### 一、创建索引的核心步骤 1. **准备数据与集合** - 确保已创建包含向量字段的集合,并完成数据插入[^2]。 - 示例代码片段: ```python from pymilvus import Collection collection = Collection("example_collection") # 插入数据后... ``` 2. **定义索引参数** - 选择适合场景的索引类型(如`IVF_FLAT`、`HNSW`、`IVF_SQ8`)和参数。 - 示例参数配置: ```python index_params = { "metric_type": "L2", # 相似度度量方式(L2/内积/IP等) "index_type": "IVF_FLAT", # 索引类型 "params": {"nlist": 128} # 索引参数(不同索引类型参数不同) } ``` 3. **执行索引创建** - 对指定字段调用`create_index`方法: ```python collection.create_index(field_name="embedding", index_params=index_params) print("索引创建完成") ``` 注:索引构建为异步操作,可通过`collection.indexes`查询进度[^2]。 #### 二、索引类型选择指南 | 索引类型 | 适用场景 | 特点 | 参数示例 | |----------------|----------------------------|-----------------------------|----------------------| | `IVF_FLAT` | 高精度搜索 | 平衡精度与速度,内存占用较高 | `{"nlist": 1024}` | | `IVF_SQ8` | 内存敏感场景 | 量化压缩,内存减少约75% | `{"nlist": 512}` | | `HNSW` | 高召回率+低延迟 | 图结构索引,支持动态数据 | `{"M": 16, "efConstruction": 200}` | | `DISKANN` | 超大规模数据集 | 基于SSD优化存储 | `{"max_degree": 56}` | #### 三、使用索引进行搜索 1. **加载数据到内存** ```python collection.load() ``` 2. **配置搜索参数** - 根据索引类型设置参数: ```python search_params = { "metric_type": "L2", "params": {"nprobe": 16} # IVF系列专用参数 # HNSW使用示例:{"ef": 64} } ``` 3. **执行相似度搜索** ```python results = collection.search( data=query_vectors, anns_field="embedding", param=search_params, limit=10 ) ``` #### 四、特殊场景处理 1. **标量字段过滤** - 标量字段(如VARCHAR/INT)自动建立倒排索引[^3]: ```python search_params = { "bool_expr": "age > 30 AND category == 'electronics'" } ``` 2. **混合查询示例** ```python results = collection.search( data=query_vectors, anns_field="embedding", expr="price < 100", # 标量过滤条件 param=search_params, limit=5 ) ``` #### 五、常见问题解决 - **索引未生效**:检查是否完成索引构建和`collection.load()`操作[^2] - **参数不匹配**:确认`index_type`与`params`的对应关系(如IVF需要`nlist`,HNSW需要`M/efConstruction`) - **性能调优**:通过`nprobe`(IVF)或`ef`(HNSW)平衡召回率与延迟[^4]
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

shulu

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值