前言
milvus支持多种GPU索引类型,它能加速查询的性能和效率,特别是在高吞吐量,低延迟和高召回率的场景。本文我们将介绍milvus支持的各种GPU索引类型以及它们适用的场景、性能特点。
下图展示了milvus的几种索引的查询性能对比,通过下图我们发现批量查询的场景性能会更好
GPU_CAGRA
GPU_CAGRA是一个针对GPU优化的基于图的索引,它在GPU上能很好的执行推理。它最适合只有少量查询的场景,通过低频的内存训练的GPU通常得不到最优的结果。
- 索引构建参数:
Parameter | Description | Default Value |
---|---|---|
intermediate_graph_degree |
通过在剪枝之前确定图的深度来影响召回率和构建时间,推荐的值是32或者64 |
128 |
graph_degree |
通过在剪枝之后设置图的深度来影响查询性能和召回率。这两个深度之间的差异越大,构建时间就越长。它的值必须小于intermediate_graph_degree的值 |
64 |
build_algo |
选择剪枝之前的图生成算法。可选的值: |