特征选择方法-统计方法

本文介绍了特征选择中的统计方法,包括信息熵及其计算公式,条件熵的概念,信息增益作为度量特征重要性的指标,互信息用于衡量特征与类别间的依赖关系,以及卡方统计在检验特征与类别独立性中的应用。这些方法在机器学习的特征选择中发挥关键作用。
摘要由CSDN通过智能技术生成

信息熵:

在信息论与概率统计中,熵是表示随机变量不确定性的度量。对于离散型随机变量集合X,其概率分布为


则随机变量X的熵为


熵越大,表示随机变量的不确定性就越大。

例如,当随机变量X的集合取值只有0和1时,其概率分布为


则,熵为


当H(p)的值为0时,说明变量完全没有不确定性,当p=0.5,也就是H(P)=1时(最大值),说明随机变量的不确定性最大。而在机器学习中,熵的值越大表示所含的信息量越多(特征选择算法也是利用该思想)。

而在特征选择计算方法中,熵的计算公式为

<

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值