信息熵:
在信息论与概率统计中,熵是表示随机变量不确定性的度量。对于离散型随机变量集合X,其概率分布为
则随机变量X的熵为
熵越大,表示随机变量的不确定性就越大。
例如,当随机变量X的集合取值只有0和1时,其概率分布为
则,熵为
当H(p)的值为0时,说明变量完全没有不确定性,当p=0.5,也就是H(P)=1时(最大值),说明随机变量的不确定性最大。而在机器学习中,熵的值越大表示所含的信息量越多(特征选择算法也是利用该思想)。
而在特征选择计算方法中,熵的计算公式为
<
信息熵:
在信息论与概率统计中,熵是表示随机变量不确定性的度量。对于离散型随机变量集合X,其概率分布为
则随机变量X的熵为
熵越大,表示随机变量的不确定性就越大。
例如,当随机变量X的集合取值只有0和1时,其概率分布为
则,熵为
当H(p)的值为0时,说明变量完全没有不确定性,当p=0.5,也就是H(P)=1时(最大值),说明随机变量的不确定性最大。而在机器学习中,熵的值越大表示所含的信息量越多(特征选择算法也是利用该思想)。
而在特征选择计算方法中,熵的计算公式为
<