Feature Importance-aware Transferable Adversarial Attacks(FIA,ICCV 2021)
1、摘要
基于迁移性的黑盒攻击,中间层攻击。 首先利用 聚合梯度获取迁移性更好的梯度信息,本文中认为梯度信息代表了该点的特征重要性,然后通过抑制比较重要的特征,增强比较不重要的特征,来干扰模型最终的判断。
从图中可以看出传统的攻击方式生成的对抗样本在黑盒攻击中会被弱化,甚至无效,鸟的特征比原先更加突出,而本文的方法FIA则将注意力转移出去了。
流程图如下:
输入一张图片,提取到中间层的特征,然后进行反向传播计算梯度,用梯度来代表特征的重要性,然后将特征图谱和特征重要性进行点乘,得到加权特征映射,再用来做优化,优化目标是通过具体抑制积极/重要特征和促进消极/琐碎特征来优化加权特征映射,从而获得更高的可转移对抗性样本。
中间层:指CNN中输入和输出之间的所有层,都叫中间层,文中只取其中一层,所以有一个层数