梯度下降优化算法总结

本文详细介绍了梯度下降的各种优化算法,包括批量梯度下降、随机梯度下降和小批量梯度下降,以及动量法、Nesterov动量法、Adagrad、Adadelta、RMSprop、Adam和AdaMax等优化方法,探讨了它们的优势、挑战和应用场景。
摘要由CSDN通过智能技术生成

本次介绍梯度下降优化算法。主要参考资料为一篇综述《An overview of gradient descent optimization algorithms》

1. 引言

梯度下降 是一种目前相当火的优化算法,因为神经网络模型基本都依赖其训练。

绝大部分优化问题都可以转化为下面的问题:

给定一个与参数 \(\theta \) 有关的目标函数 \(J(\theta)\), 求使得 \(J\) 最小的参数 \(\theta \).

针对此类问题, 梯度下降通过不断往梯度的负方向移动参数来求解。

2. 梯度下降算法变种

梯度下降算法主要有三种变种,主要区别在于使用多少数据来计算目标函数的梯度。 不同方法主要在准确性和优化速度间做权衡。

2-1 Batch gradient descent (BGD)

Vanilla gradient descent 又称为 Batch gradient descent (BGD),其需要计算整个训练集的梯度,即:

\(\theta = \theta -\eta \nabla_{\theta}J(\theta)\) ,其中 \(\eta\) 为学习率,用来控制更新的“力度”。

优点:

对于凸目标函数,可以保证全局最优; 对于非凸目标函数,可以保证一个局部最优。

缺点:

速度慢; 数据量大时不可行; 无法在线优化(即无法处理动态产生的新样本)。

2-2 Stochastic gradient descent (SGD)

Stochastic gradient descent (SGD),仅计算某个样本的梯度,即针对某一个训练样本 \(x^i\) 及其label \(y^i\)更新参数:

\(\theta = \theta -\eta \nabla_{\theta}J(\theta;x^i,y^i)\)

逐步减小学习率,SGD表现得同BGD很相似,最后都可以有不错的收敛。

优点:

更新频次快,优化速度更快; 可以在线优化(可以无法处理动态产生的新样本);一定的随机性导致有几率跳出局部最优(随机性来自于用一个样本的梯度去代替整体样本的梯度)

缺点:

随机性可能导致收敛复杂化,即使到达最优点仍然会进行过度优化,因此SGD得优化过程相比BGD充满动荡;

2-3 Mini-batch gradient descent (MBGD)

Mini-batch gradient descent (MBGD) 计算包含\(n\) 个样本的mini-batch的梯度

\(\theta = \theta -\eta \nabla_{\theta}J(\the

  • 14
    点赞
  • 74
    收藏
    觉得还不错? 一键收藏
  • 1
    评论
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值