【深度学习】如何理解以add的方式融合特征

在各个网络模型中,ResNet,FPN等采用的element-wise add来融合特征,而DenseNet等则采用concat来融合特征。那add与concat形式有什么不同呢?事实上两者都可以理解为整合特征图信息。只不过concat比较直观,而add理解起来比较生涩。

add与concat的特征融合形式

从图中可以发现,concat每个通道对应着对应的卷积核。 而add形式则将对应的特征图相加,在进行卷积操作,相当于加了一个先验:对应通道的特征图语义类似,从而对应的特征图共享一个卷积核。 因此add可以认为是特殊的concat形式。但是add的计算量要比concat的计算量小得多。
评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值