数学_矩阵向量求导公式相关

目录

一. 向量变元的实值标量函数

 1、四个法则

 2、几个公式

二. 矩阵变元的实值标量函数 

1、四则运算 

2、几个公式 


求导公式

参考:矩阵分析与应用 张贤达 第五章 梯度分析和最优化 P271

一. 向量变元的实值标量函数

本节证明过程参考:矩阵求导公式的数学推导(矩阵求导——基础篇) - 知乎

设:

 1、四个法则

 

 

 

 2、几个公式

2.1 向量x与常数向量a的乘积,对该向量x求导

 2.2 向量x的转置与自身的乘积,对该向量x求导

 2.3 向量x的转置乘以一个常数矩阵,再乘以该向量,对该向量求导

 2.4 向量x与两个常数向量乘积的求导

2.5 几个其它公式

2.5.1 向量x的转置对自身的导数,等于单位向量I

2.5.2  向量x的转置乘以矩阵A, 乘以向量y, 对向量x的导数

2.5.3 设A为m*n矩阵,x为n*1向量,向量(Ax)对x求导,等于矩阵A的转置

\frac{\partial Ax}{\partial x} = A^T 

二. 矩阵变元的实值标量函数 

 设:

1、四则运算 

 

2、几个公式  

2.1 常数向量a的转置乘以矩阵X,再乘以常数向量b,对矩阵X的导数

(分子是一个标量,分母是一个矩阵)

2.1 常数向量a的转置乘以矩阵X的转置,再乘以常数向量b,对矩阵X的导数 

(分子是一个标量,分母是一个矩阵)

 2.3 常数向量a的转置乘以矩阵X,再乘以矩阵X的转置,再乘以常数向量b,对矩阵X的导数 

2.3 常数向量a的转置乘以矩阵X的转置,再乘以矩阵X,再乘以常数向量b,对矩阵X的导数  

参考:矩阵求导公式的数学推导(矩阵求导——基础篇) - 知乎

张贤达《矩阵分析与应用(第二版)》P147

评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

惊鸿一博

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值