量子计算基础——理论基础

本文介绍了量子计算的基础知识,包括叠加态、测量、相位、纯态和混合态的概念。通过实例解释了如何通过测量区分不同量子态,探讨了量子态的相位信息与概率之间的关系,以及纯态和混合态的区别。此外,还讨论了密度矩阵和布洛赫球作为描述量子态的工具,以及量子测量的基本原理和投影测量的概念。
摘要由CSDN通过智能技术生成
  • 叠加态

    两个二维态矢 ∣ 1 > = [ 0 1 ] 和 ∣ 0 > = [ 1 0 ] \left| 1 \right> =\left[ \begin{matrix} 0& 1\\ \end{matrix} \right] \text{和}\left| 0 \right> =\left[ \begin{matrix} 1& 0\\ \end{matrix} \right] 1=[01]0=[10] 可以构成一个二维空间的基,而任意一个态便可以写成这两个基在复数空间上的线性组合:
    ∣ ψ > = α ∣ 0 > + β e i θ ∣ 1 > \left| \psi \right> =\alpha \left| 0 \right> +\beta e^{i\theta}\left| 1 \right> ψ=α0+βeiθ1这里的 e i θ e^{i\theta} eiθ 表示模为1、幅角为 θ \theta θ 的复数。

  • 测量
    我们定义测量就是将量子态 ∣ ψ > \left| \psi \right> ψ 投影到另一个态 ∣ a > \left| a \right> a上获得一个概率,而这个概率就是两个量子态内积的平方:
    P α = ∣ < ψ ∣ α > ∣ 2 P_{\alpha}=\left| \left< \psi \mid \alpha \right> \right|^2 Pα=ψα2其它概率下会将量子态投影到 ∣ α > \left|\alpha\right> α 的正交态上去:
    P α ⊥ = 1 − P α P_{\alpha \bot}=1-P_{\alpha} Pα=1Pα例如下图中的 ∣ ψ > \left|\psi\right> ψ 投影到 ∣ 0 > \left|0\right> 0 上的概率为: P 0 = ∣ < ψ ∣ 0 > ∣ 2 = ∣ ( ( 1 2 , 3 2 ) , ( 1 , 0 ) ) ∣ 2 = 1 4 P_0=\left| \left< \psi \mid 0 \right> \right|^2=\left| \left( \left( \frac{1}{2},\frac{\sqrt{3}}{2} \right) ,\left( 1,0 \right) \right) \right|^2=\frac{1}{4} P0=ψ02=((21,23 ),(1,0))2=41;投影到其正交状态即 ∣ 1 > \left|1\right> 1 上的概率为: P 0 ⊥ = P 1 = ∣ < ψ ∣ 0 > ∣ 2 = ∣ ( ( 1 2 , 3 2 ) , ( 0 , 1 ) ) ∣ 2 = 3 4 P_{0\bot}=P_1=\left| \left< \psi \mid 0 \right> \right|^2=\left| \left( \left( \frac{1}{2},\frac{\sqrt{3}}{2} \right) ,\left( 0,1 \right) \right) \right|^2=\frac{3}{4} P0=P1=ψ02=((21,23 ),(0,1))2=43
    在这里插入图片描述

  • 相位、纯态和混合态(Phase, Pure State and Mixed State)
    如果将量子态初始化到某一个未知的叠加态上面,能否通过反复的测量得到它的表达式呢?
    第一种情况:
    这里有两个叠加态:
    ∣ ψ 1 > = 1 2 ( ∣ 0 > + ∣ 1 > ) ∣ ψ 2 > = 1 2 ( ∣ 0 > − ∣ 1 > ) \left| \psi _1 \right> =\frac{1}{\sqrt{2}}\left( \left| 0 \right> +\left| 1 \right> \right) \\ \left| \psi _2 \right> =\frac{1}{\sqrt{2}}\left( \left| 0 \right> -\left| 1 \right> \right) ψ1=2 1(0+1)ψ2=2 1(01)
    我们利用上面测量的概念分别对这两个叠加态进行在 ∣ 1 > \left| 1 \right> 1 ∣ 0 > \left| 0 \right> 0 上的测量:
    ∣ < ψ 1 ∣ 1 > ∣ 2 = ( 1 2 [ 1 1 ] [ 0 1 ] ) 2 = 1 2 ∣ < ψ 1 ∣ 0 > ∣ 2 = ( 1 2 [ 1 1 ] [ 1 0 ] ) 2 = 1 2 ∣ < ψ 2 ∣ 1 > ∣ 2 = ( 1 2 [ 1 − 1 ] [ 0 1 ] ) 2 = 1 2 ∣ < ψ 2 ∣ 0 > ∣ 2 = ( 1 2 [ 1 − 1 ] [ 1 0 ] ) 2 = 1 2 \left| \left< \psi _1 \mid 1 \right> \right|^2=\left( \frac{1}{\sqrt{2}}\left[ \begin{matrix} 1& 1\\ \end{matrix} \right] \left[ \begin{array}{c} 0\\ 1\\ \end{array} \right] \right) ^2=\frac{1}{2} \\ \left| \left< \psi _1 \mid 0 \right> \right|^2=\left( \frac{1}{\sqrt{2}}\left[ \begin{matrix} 1& 1\\ \end{matrix} \right] \left[ \begin{array}{c} 1\\ 0\\ \end{array} \right] \right) ^2=\frac{1}{2} \\ \left| \left< \psi _2 \mid 1 \right> \right|^2=\left( \frac{1}{\sqrt{2}}\left[ \begin{matrix} 1& -1\\ \end{matrix} \right] \left[ \begin{array}{c} 0\\ 1\\ \end{array} \right] \right) ^2=\frac{1}{2} \\ \left| \left< \psi _2 \mid 0 \right> \right|^2=\left( \frac{1}{\sqrt{2}}\left[ \begin{matrix} 1& -1\\ \end{matrix} \right] \left[ \begin{array}{c} 1\\ 0\\ \end{array} \right] \right) ^2=\frac{1}{2} ψ112=(2 1[11][

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

诸葛思颖

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值