Tensorflow笔记:全连接网络基础

转载于人工智能实践:Tensorflow笔记

  • mnist 数据集:包含 7 万张黑底白字手写数字图片,其中 55000 张为训练集,
    5000 张为验证集,10000 张为测试集。每张图片大小为 28*28 像素,图片中纯黑色像素值为 0,纯白色像素值为 1。数据集的标签是长度为 10 的一维数组,数组中每个元素索引号表示对应数字出现的概率。
  • 使用 input_data 模块中的 read_data_sets()函数加载 mnist 数据集: from tensorflow.examples.tutorials.mnist import input_data mnist = input_data.read_data_sets(’./data/’,one_hot=True)

在 read_data_sets()函数中有两个参数,第一个参数表示数据集存放路径,第二个参数表示数据集的存取形式。当第二个参数为 Ture
时,表示以独热码形式存取数据集。read_data_sets()函数运行时,会检查指定路径内是否已经有数据集,若指定路径中没有数据集,则自动下载,并将 mnist 数据集分为训练集 train验证集
validation 和测试集 test 存放。在终端显示如下内容:
Extracting ./data/train-images-idx3-ubyte.gz
Extracting ./data/train-labels-idx1-ubyte.gz
Extracting ./data/tl0k-images-idx3-ubyte.gz
Extracting ./data/ tl0k-labels-idx1-ubyte.gz

  • 返回 mnist 数据集中训练集 train、验证集 validation 和测试集 test 样本数 在 Tensorflow 中用以下函数返回子集样本数:

  • ①返回训练集 train 样本数
    print “train data size:”,mnist.train.mun_examples 输出结果:train data size:55000

  • ②返回验证集 validation 样本数
    print “validation data size:”,mnist.validation.mun_examples 输出结果:validation data size:5000

  • ③返回测试集 test 样本数
    print “test data size:”,mnist.test.mun_examples 输出结果:test data size:10000

  • 使用 train.labels 函数返回 mnist 数据集标签

  • 使用 train.images 函数返回 mnist 数据集图片像素值

  • 使用 mnist.train.next_batch()函数将数据输入神经网络

  • 实现“Mnist 数据集手写数字识别”的常用函数:
    ①tf.get_collection(“”)函数表示从 collection 集合中取出全部变量生成一个列表。
    ②tf.add( )函数表示将参数列表中对应元素相加。
    ③tf.cast(x,dtype)函数表示将参数 x 转换为指定数据类型。
    ④tf.equal( )函数表示对比两个矩阵或者向量的元素。若对应元素相等,则返回 True;若对应元素不相等,则返回 False。
    ⑤tf.reduce_mean(x,axis)函数表示求取矩阵或张量指定维度的平均值。若不
    指定第二个参数,则在所有元素中取平均值;若指定第二个参数为 0,则在第一维元素上取平均值,即每一列求平均值;若指定第二个参数为 1,则在第二维元素上取平均值,即每一行求平均值。
    ⑥tf.argmax(x,axis)函数表示返回指定维度 axis 下,参数 x 中最大值索引号。
    ⑦os.path.join()函数表示把参数字符串按照路径命名规则拼接。
    ⑧字符串.split( )函数表示按照指定“拆分符”对字符串拆分,返回拆分列表。
    ⑨tf.Graph( ).as_default( )函数表示将当前图设置成为默认图,并返回一个上下文管理器。该函数一般与 with 关键字搭配使用,应用于将已经定义好的神经网络在计算图中复现。

  • 神经网络模型的保存
    在反向传播过程中,一般会间隔一定轮数保存一次神经网络模型,并产生三个文件(保存当前图结构的.meta 文件、保存当前参数名的.index 文件、保存当前参数的.data 文件),在
    Tensorflow 中如下表示:

saver = tf.train.Saver()          
with tf.Session() as sess:    
    for i in range(STEPS): 
        if i % 轮数 == 0:          
            saver.save(sess, os.path.join(MODEL_SAVE_PATH, 
MODEL_NAME), global_step=global_step) 

其中,tf.train.Saver()用来实例化 saver 对象。上述代码表示,神经网络每循环规定的轮数,将神经网络模型中所有的参数等信息保存到指定的路径中,并在存放网络模型的文件夹名称中注明保存模型时的训练轮数。

  • 神经网络模型的加载
    在测试网络效果时,需要将训练好的神经网络模型加载,在 Tensorflow 中这样表示:
with tf.Session() as sess: 
    ckpt = tf.train.get_checkpoint_state(存储路径) 
    if ckpt and ckpt.model_checkpoint_path: 
           saver.restore(sess, ckpt.model_checkpoint_path) 

在 with 结构中进行加载保存的神经网络模型,若 ckpt 和保存的模型在指定路径中存在,则将保存的神经网络模型加载到当前会话中。

  • 加载模型中参数的滑动平均值
    在保存模型时,若模型中采用滑动平均,则参数的滑动平均值会保存在相应文件中。通过实例化 saver 对象,实现参数滑动平均值的加载,在 Tensorflow 中如下表示:
    ema = tf.train.ExponentialMovingAverage(滑动平均基数) ema_restore = ema.variables_to_restore()
    saver = tf.train.Saver(ema_restore)

  • 神经网络模型准确率评估方法
    在网络评估时,一般通过计算在一组数据上的识别准确率,评估神经网络的效果。在 Tensorflow 中这样表示:
    correct_prediction = tf.equal(tf.argmax(y, 1), tf.argmax(y_, 1)) accuracy = tf.reduce_mean(tf.cast(correct_prediction, tf.float32))
    在上述中,y 表示在一组数据(即 batch_size 个数据)上神经网络模型的预测
    结果,y 的形状为[batch_size,10],每一行表示一张图片的识别结果。通过 tf.argmax()函数取出每张图片对应向量中最大值元素对应的索引值,组成长度为输入数据 batch_size
    个的一维数组。通过 tf.equal()函数判断预测结果张量和实际标签张量的每个维度是否相等,若相等则返回 True,不相等则返回 False。通过 tf.cast() 函数将 得到的 布 尔 型
    数 值 转 化 为 实 数 型 , 再通过
    tf.reduce_mean()函数求平均值,最终得到神经网络模型在本组数据上的准确率。

  • 神经网络八股:前向传播过程、反向传播过程、反向传播过程中用到的正则化、指数衰减学习率、滑动平均方法的设置、以及测试模块。

  • 前向传播过程文件(mnist_forward.py)
    在前向传播过程中,需要定义网络模型输入层个数、隐藏层节点数、输出层个数,定义网络参数 w、偏置 b,定义由输入到输出的神经网络架构。
    实现手写体 mnist 数据集的识别任务前向传播过程如下:

#conding:utf-8

import os
os.environ['TF_CPP_MIN_LOG_LEVEL'] = '2' #去除警告

import tensorflow as tf
from tensorflow.examples.tutorials.mnist import input_data
import numpy as np
import matplotlib.pyplot as  plt

gpu_options = tf.GPUOptions(per_process_gpu_memory_fraction=0.333) #分配GPU使用防止GPU溢出
sess = tf.Session(config=tf.ConfigProto(gpu_options=gpu_options))


# 1前向传播过程
# 网络输入节点为784个(代表每张输入图片的像素个数)
INPUT_NODE = 784
# 输出节点为10个(表示输出为数字0-9的十分类)
OUTPUT_NODE = 10
# 隐藏层节点500个
LAYER1_NODE = 500


def get_weight(shape, regularizer):
    # 参数满足截断正态分布,并使用正则化,
    w = tf.Variable(tf.truncated_normal(shape, stddev=0.1))
    # w = tf.Variable(tf.random_normal(shape,stddev=0.1))
    # 将每个参数的正则化损失加到总损失中
    if regularizer != None: tf.add_to_collection('losses', tf.contrib.layers.l2_regularizer(regularizer)(w))
    return w


def get_bias(shape):
    # 初始化的一维数组,初始化值为全 0
    b = tf.Variable(tf.zeros(shape))
    return b


def forward(x, regularizer):
    # 由输入层到隐藏层的参数w1形状为[784,500]
    w1 = get_weight([INPUT_NODE, LAYER1_NODE], regularizer)
    # 由输入层到隐藏的偏置b1形状为长度500的一维数组,
    b1 = get_bias([LAYER1_NODE])
    # 前向传播结构第一层为输入 x与参数 w1矩阵相乘加上偏置 b1 ,再经过relu函数 ,得到隐藏层输出 y1。
    y1 = tf.nn.relu(tf.matmul(x, w1) + b1)
    # 由隐藏层到输出层的参数w2形状为[500,10]
    w2 = get_weight([LAYER1_NODE, OUTPUT_NODE], regularizer)
    # 由隐藏层到输出的偏置b2形状为长度10的一维数组
    b2 = get_bias([OUTPUT_NODE])
    # 前向传播结构第二层为隐藏输出 y1与参 数 w2 矩阵相乘加上偏置 矩阵相乘加上偏置 b2,得到输出 y。
    # 由于输出 。由于输出 y要经过softmax oftmax 函数,使其符合概率分布,故输出y不经过 relu函数
    y = tf.matmul(y1, w2) + b2
    return y

由上述代码可知,在前向传播过程中,规定网络输入结点为 784 个(代表每张输入图片的像素个数),隐藏层节点 500 个,输出节点 10 个(表示输出为数字 0-9的十分类)。由输入层到隐藏层的参数 w1 形状为[784,500],由隐藏层到输出层的参数 w2 形状为[500,10],参数满足截断正态分布,并使用正则化,将每个参数的正则化损失加到总损失中。由输入层到隐藏层的偏置 b1 形状为长度为 500的一维数组,由隐藏层到输出层的偏置 b2 形状为长度为 10 的一维数组,初始化值为全 0。前向传播结构第一层为输入 x 与参数 w1 矩阵相乘加上偏置 b1,再经过 relu 函数,得到隐藏层输出 y1。前向传播结构第二层为隐藏层输出 y1 与参数 w2 矩阵相乘加上偏置 b2,得到输出 y。由于输出 y 要经过softmax 函数,使其符合概率分布,故输出 y 不经过 relu 函数。

  • 反向传播过程文件(mnist_backward.py)
    反向传播过程实现利用训练数据集对神经网络模型训练,通过降低损失函数值,实现网络模型参数的优化,从而得到准确率高且泛化能力强的神经网络模型。
    实现手写体 mnist 数据集的识别任务反向传播过程如下:
#conding:utf-8

import os
os.environ['TF_CPP_MIN_LOG_LEVEL'] = '2' #去除警告

import tensorflow as tf
from tensorflow.examples.tutorials.mnist import input_data
import numpy as np
import matplotlib.pyplot as  plt

gpu_options = tf.GPUOptions(per_process_gpu_memory_fraction=0.333) #分配GPU使用防止GPU溢出
sess = tf.Session(config=tf.ConfigProto(gpu_options=gpu_options))


# 2反向传播过程
# 引入input_data、前向传播mnist_forward
from tensorflow.examples.tutorials.mnist import input_data
import mnist_forward

# 每轮喂入神经网络的图片数
BATCH_SIZE = 200
# 初始学习率
LEARNING_RATE_BASE = 0.1
# 学习率衰减率
LEARNING_RATE_DECAY = 0.99
# 正则化系数
REGULARIZER = 0.0001
# 训练轮数
STEPS = 50000
# 滑动平均衰减率
MOVING_AVERAGE_DECAY = 0.99
# 模型保存路径
MODEL_SAVE_PATH = "./model/"
# 模型保存名称
MODEL_NAME = "mnist_model"


def backward(mnist):
    # 用placeholder给训练数据x和标签y_占位
    x = tf.placeholder(tf.float32, [None, mnist_forward.INPUT_NODE])
    y_ = tf.placeholder(tf.float32, [None, mnist_forward.OUTPUT_NODE])
    # 调用mnist_forward文件中的前向传播过程forword()函数,并设置正则化,计算训练数据集上的预测结果y
    y = mnist_forward.forward(x, REGULARIZER)


# 当前计算轮数计数器赋值,设定为不可训练类型
    global_step = tf.Variable(0, trainable=False)

# 调用包含所有参数正则化损失的损失函数loss
    ce = tf.nn.sparse_softmax_cross_entropy_with_logits(logits=y, labels=tf.argmax(y_, 1))
    cem = tf.reduce_mean(ce)
    loss = cem + tf.add_n(tf.get_collection('losses'))
# 设定指数衰减学习率learning_rate
    learning_rate = tf.train.exponential_decay(
        LEARNING_RATE_BASE,
        global_step,
        mnist.train.num_examples / BATCH_SIZE,
        LEARNING_RATE_DECAY,
        staircase=True)

# 使用梯度衰减算法对模型优化,降低损失函数
# train_step = tf.train.GradientDescentOptimizer(learning_rate).minimize(loss, global_step=global_step)
    train_step = tf.train.MomentumOptimizer(learning_rate, 0.9).minimize(loss, global_step=global_step)
# train_step = tf.train.AdamOptimizer(learning_rate).minimize(loss, global_step=global_step)
# 定义参数的滑动平均
    ema = tf.train.ExponentialMovingAverage(MOVING_AVERAGE_DECAY, global_step)
    ema_op = ema.apply(tf.trainable_variables())
# 实例化可还原滑动平均的saver
# 在模型训练时引入滑动平均可以使模型在测试数据上表现的更加健壮
    with tf.control_dependencies([train_step, ema_op]):
        train_op = tf.no_op(name='train')

    saver = tf.train.Saver()

    with tf.Session() as sess:  # 所有参数初始化
        init_op = tf.global_variables_initializer()
        sess.run(init_op)
    # 每次喂入batch_size组(即200组)训练数据和对应标签,循环迭代steps轮
        for i in range(STEPS):
            xs, ys = mnist.train.next_batch(BATCH_SIZE)
            _, loss_value, step = sess.run([train_op, loss, global_step], feed_dict={x: xs, y_: ys})
            if i % 1000 == 0:
                print("After %d training step(s), loss on training batch is %g." % (step, loss_value))
                # 将当前会话加载到指定路径
                saver.save(sess, os.path.join(MODEL_SAVE_PATH, MODEL_NAME), global_step=global_step)


def main():
    # 读入mnist
    mnist = input_data.read_data_sets("./data/", one_hot=True)
    # 反向传播
    backward(mnist)


if __name__ == '__main__':
    main()

由上述代码可知,在反向传播过程中,首先引入 tensorflow、input_data、前向传播 mnist_forward 和 os 模块,定义每轮喂入神经网络的图片数、初始学习率、学习率衰减率、正则化系数、训练轮数、模型保存路径以及模型保存名称等相关信息。在反向传播函数 backword 中,首先读入 mnist,用 placeholder 给训练数据 x 和标签 y_占位,调用 mnist_forward 文件中的前向传播过程 forword()函数,并设置正则化,计算训练数据集上的预测结果 y,并给当前计算轮数计数器赋值,设定为不可训练类型。接着,调用包含所有参数正则化损失的损失函数
loss,并设定指数衰减学习率 learning_rate。然后,使用梯度衰减算法对模型优化,降低损失函数,并定义参数的滑动平均。最后,在 with 结构中,实现所有参数初始化,每次喂入 batch_size 组(即 200 组)训练数据和对应标签,循环迭代 steps 轮,并每隔 1000 轮打印出一次损失函数值信息,并将当前会话加载到指定路径。最后,通过主函数 main(),加载指定路径下的训练数据集,并调用规定的 backward()函数训练模型。

  • 测试过程文件(mnist_test.py)
    当训练完模型后,给神经网络模型输入测试集验证网络的准确性和泛化性。注意,所用的测试集和训练集是相互独立的。
    实现手写体 mnist 数据集的识别任务测试传播过程如下:
#conding:utf-8

import os
os.environ['TF_CPP_MIN_LOG_LEVEL'] = '2' #去除警告

import tensorflow as tf
from tensorflow.examples.tutorials.mnist import input_data
import numpy as np
import matplotlib.pyplot as  plt

gpu_options = tf.GPUOptions(per_process_gpu_memory_fraction=0.333) #分配GPU使用防止GPU溢出
sess = tf.Session(config=tf.ConfigProto(gpu_options=gpu_options))


# 验证网络的准确性和泛化性
import time
from tensorflow.examples.tutorials.mnist import input_data
import mnist_forward
import mnist_backward

# 程序5秒的循环间隔时间
TEST_INTERVAL_SECS = 5


def test(mnist):
    # 利用tf.Graph()复现之前定义的计算图
    with tf.Graph().as_default() as g:
        # 利用placeholder给训练数据x和标签y_占位
        x = tf.placeholder(tf.float32, [None, mnist_forward.INPUT_NODE])
        y_ = tf.placeholder(tf.float32, [None, mnist_forward.OUTPUT_NODE])
        # 调用mnist_forward文件中的前向传播过程forword()函数
        y = mnist_forward.forward(x, None)
        # 实例化具有滑动平均的saver对象,从而在会话被加载时模型中的所有参数被赋值为各自的滑动平均值,增强模型的稳定性
        ema = tf.train.ExponentialMovingAverage(mnist_backward.MOVING_AVERAGE_DECAY)
        ema_restore = ema.variables_to_restore()
        saver = tf.train.Saver(ema_restore)
        # 计算模型在测试集上的准确率
        correct_prediction = tf.equal(tf.argmax(y, 1), tf.argmax(y_, 1))
        accuracy = tf.reduce_mean(tf.cast(correct_prediction, tf.float32))

        while True:
            with tf.Session() as sess:
                # 加载指定路径下的ckpt
                ckpt = tf.train.get_checkpoint_state(mnist_backward.MODEL_SAVE_PATH)
                # 若模型存在,则加载出模型到当前对话,在测试数据集上进行准确率验证,并打印出当前轮数下的准确率
                if ckpt and ckpt.model_checkpoint_path:
                    saver.restore(sess, ckpt.model_checkpoint_path)
                    global_step = ckpt.model_checkpoint_path.split('/')[-1].split('-')[-1]
                    accuracy_score = sess.run(accuracy, feed_dict={x: mnist.test.images, y_: mnist.test.labels})
                    print("After %s training step(s), test accuracy = %g" % (global_step, accuracy_score))
                # 若模型不存在,则打印出模型不存在的提示,从而test()函数完成
                else:
                    print('No checkpoint file found')
                    return
            time.sleep(TEST_INTERVAL_SECS)


def main():
    # 加载指定路径下的测试数据集
    mnist = input_data.read_data_sets("./data/", one_hot=True)
    test(mnist)


if __name__ == '__main__':
    main()

在上述代码中,首先需要引入 time 模块、tensorflow、input_data、前向传播mnist_forward、反向传播 mnist_backward 模块和 os 模块,并规定程序 5 秒的循环间隔时间。接着,定义测试函数 test(),读入 mnist 数据集,利用 tf.Graph()复现之前定义的计算图,利用 placeholder 给训练数据 x 和标签 y_占位,调用mnist_forward 文件中的前向传播过程 forword()函数,计算训练数据集上的预测结果 y。接着,实例化具有滑动平均的 saver 对象,从而在会话被加载时模型中的所有参数被赋值为各自的滑动平均值,增强模型的稳定性,然后计算模型在测试集上的准确率。在 with 结构中,加载指定路径下的 ckpt,若模型存在,则加载出模型到当前对话,在测试数据集上进行准确率验证,并打印出当前轮数下的准确率,若模型不存在,则打印出模型不存在的提示,从而 test()函数完成。 通过主函数
main(),加载指定路径下的测试数据集,并调用规定的 test 函数,进行模型在测试集上的准确率验证。

  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值