tensorflow(三)实战——全连接网络

本文介绍了使用TensorFlow实现全连接网络的过程中遇到的问题,包括placeholder的形状设定、输入数据的维度处理、均方误差计算的注意事项以及全局变量初始化的位置。通过实例解释了如何解决这些问题。
摘要由CSDN通过智能技术生成

一、代码:

import tensorflow as tf
import numpy as np
import matplotlib.pyplot as plt

network_shape=[1,5,10,1]
learning_rate=0.1
display_step=500
num_steps=5000

x_dot=np.linspace(1,2,300,dtype=np.float32)[:,np.newaxis]
y_dot=2*np.power(x_dot,3)+np.power(x_dot,2)+np.random.normal(0,0.5,x_dot.shape)

X_p=tf.placeholder(dtype=tf.float32,shape=[None,network_shape[0]],name="input")
Y_p=tf.placeholder(dtype=tf.float32,shape=[None,network_shape[-1]],name="output")


w={"w1":tf.Variable(tf.random_normal([network_shape[0],network_shape[1]])),
   "w2":tf.Variable(tf.random_normal([network_shape[1],network_shape[2]])),
   "out":tf.Variable(tf.random_normal([network_shape[2],network_shape[3]]))}

b={"b1":tf.Variable(tf.random_normal([network_shape[1]])),
   "b2": tf.Variable(tf.random_normal([network_shape[2]])),
 
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值