运放虚断虚短来源

本文介绍了理想运放的三大特点:增益无穷大、输入阻抗无穷大、输出阻抗为0,并以此为基础,详细解释了运放的虚断和虚短概念。虚断是因为输入阻抗极高,使得输入端电流几乎为0,而虚短则是由于负反馈和运放的高增益,使得同相端和反相端电压相等。在满足负反馈和工作在线性放大区的条件下,虚短现象才成立。
摘要由CSDN通过智能技术生成

第一步,理想运放

首先,第一个问题,我为什么要说理想运放呢?

因为一般来说,我们了解一个东西,都是先将它当做理想来看的,这样最为简单,也最容易懂。

当我们拿到一个陌生的电路,首先我们肯定是要知道这个电路是干什么用的对不?

这个时候我们就先不用考虑电路中器件的非理想特性,比如先不考虑温漂,漏电,寄生电感,寄生电容等等这些。我们就先把它当做理想的,然后看这个电路到底实现了什么功能,运放电路一般也是这么分析的。

等我们知道这个电路是干啥用的,然后再看看器件的哪些特性会导致这个电路失效,或者说不按照预期的工作,这个时候就要考虑非理想特性了。

所以,我们了解理想运放的目的,就是为了在一开始的时候能快速的分析出电路的工作原理,实现了什么功能。

其次,理想运放有哪些特性呢?

理想运放主要有以下三点:

  • 1、增益无穷大

  • 2、输入阻抗无穷大

  • 3、输出阻抗为0

那么这三点特性又是怎么来的呢?

1、增益无穷大

增益无穷大好理解,因为一般运放的增益就是很大的,比如Ti的uA741,开环增益是105dB左右,计算一下是多少倍呢?

20log(Av)=105dB,计算得Av=10^5.25=177828,大约是18万倍。相对于我们一般电路中几十倍的放大倍数,这个很大了。

在这里插入图片描述

2、输入阻抗无穷大

理想运放的输入阻抗无穷大,我们看看实际运放的,还是以Ti的uA741为例,如下图:
在这里插入图片描述
可以看到,输入阻抗还是比较大的,典型值是2MΩ,其实这个芯片在运放中阻抗算是偏小的了。比如TI的另外一款芯片LM358的输入阻抗就更大,差分输入阻抗10MΩ,共模输入阻抗4GΩ。
在这里插入图片描述
总之,运放的输入阻抗就是比较大的,因此呢,我们在进行原理性,分析电路工作原理的时候,就是把运放的输入阻抗看成是无穷大的。

3、输出阻抗为0

理想运放的输出阻抗可以看成是0。

一般我们不会用运放直接驱动大功率的负载,而运放的输出阻抗一般也就是几十Ω或者上百Ω,相对后级来说,输出阻抗可以忽略,因此可以将运放的输出阻抗看出无穷小,也就是0,这样分析起来方便,而且结果也不会有太大的差异。

比如ti 的uA741的输出阻抗为75Ω
在这里插入图片描述
ti的LM358输出阻抗为300Ω
在这里插入图片描述
可能有人会认为,这阻抗也不是很低啊,咋就能忽略呢?

这个其实还是看应用,如果运放后端的电路等效输入阻抗比较高,那么自然就可以忽略的。如果负载的输入阻抗本身也就只有几十或百Ω,那么自然就不能完全忽略。

以上就是理想运放的三个最大的特点,我们在拿到一个电路后,利用这三个特点,一般就能将运放电路的基本功能给分析出来。

但是可能会问这个问题:我们通常明明是利用运放的“虚短”和“虚断”分析电路的,根本就不是上面说的的这三个特点,那这又是咋回事呢?

答案其实也很简单,那就是运放的“虚短”和“虚断”,是根据上面理想运放三个特点推导出来的。

虚断和虚短

1、虚断

“虚断”相对于“虚短”来说,相对简单点。

前面说理想运放的输入阻抗无穷大,解读一下就是说,如果给运放的输入端加个电压,那么流入流出运放的输入管脚的电流就是0,阻抗无穷大嘛,自然没有电流,那就相当于是开路,也就是断路。但是呢,这跟完全断路又不一样,因为运放还是会感应输入端的电压的,所以也不是真的断路,因此,称为“虚断”。

可以看到,“虚断”跟把运放接成什么样的电路没有关系,只要是个集成运放,都可以运用虚断来分析(严格来说,实际运放输入端还是有电流的,只是相当小。如果外部电阻实在太大,导致电阻电流接近或者超过运放的输入端微小电流,“虚断”还是会失效的)。

相对于“虚断”的基本无门槛使用,运放的“虚短”使用是有门槛的。

2、虚短

先说结论,虚短使用有两个条件

  • a、电路为负反馈电路

  • b、运放工作在线性放大区

要理解这两点,我们只需要知道“虚短”是咋来的就好了

首先,虚短的意思是什么呢?

我们知道,运放有两个输入端,同相端和反相端,“虚短”说的就是同相端和反相端的电压一样,就跟短路一样,那它是如何做到这一点的呢?我们前面说的理想运放的三个特点也没有这个呀?

下面就以下图的电路为例子,看看为什么最终是u+ = u-的?
在这里插入图片描述
假设刚开始时,各处电压为0,突然u1瞬间从0变为2.5V,因为uo一开始为0V,根据“虚断”,u-没有电流流入放大器,所以u-为uo在R1和R2上的分压,依然为0V。

当u+瞬间为2.5V后,u-为0V,u+>u-,放大器会朝着电压增大的方向进行放大,即uo电压会开始升高。
在这里插入图片描述
当uo增大到1V,u-依然为uo的在R1和R2上的分压,即为0.5V。此时u+=2.5V,u-=0.5V,u+>u-,放大器将电压继续正向放大,因此uo继续增大。

那问题来了,uo增大到多少会停止呢?很容易想到,只要u+>u-,因为我们现在讨论的是理想运放,放大倍数为无穷大,所以uo就会增大(放大器是这样一个装置,它总是将输入电压放大Auo倍,即总满足:Uo=Au*(u+ - u-))。

只有当uo增加到5V时,u-电压为uo在R1和R2的分压正好是2.5V,u-等于u+,此时放大器达到平衡,不再放大,即稳定态就是现在了。

那为什么稳定态一定是u- = u+,u- > u+不行吗?

我们也可以假设下,万一uo不小心超过了5V,那么u-就会大于2.5V,u-会大于u+,此时放大器会将输出电压反方向放大,也就是减小,最终电压还是会向5V逼近。

因此,不论电路初始状态电压是怎么样的,最终输出都会稳定在5V,而且u+ = u-,因为一旦u+不等于u-,那么在无穷大的放大倍数下,输出必然会变化,最终还是会导致u+ = u-。
在这里插入图片描述
前面这些有点绕,我们仔细想一下,逻辑是不是这样:当u+不等于u-时,输出就会变化,这个变化又会送回到输入端,图中为u-,进而导致u+与u-的差值变小,差值变小,意味着输入信号变小了(运放的输入是u+ - u-,也就是差值)。

也就是说,输出信号将自己通过电阻R2和R1又送到输入端,降低了输入信号,这不就是负反馈吗?

总之,对于上面这个负反馈电路,最终的结果就是:u+ = u- 。

如果我们将运放的同相端和反相端颠倒会发生什么呢?
在这里插入图片描述
同样的,当输入突变成2.5V,因为uo初始还是0V,那么u+也是0V,此时有u+ < u-,因此,输出要减小,变成负的。当输出减小时,根据分压关系,u+也要减小,也是负的,也就说u+比u-小得更多了,即u+与u-的差值更大了。差值更大,意味着输入信号变大了(运放的输入是u+ - u-,也就是差值)。

也就是说,输出信号将自己通过电阻R2和R1又送到输入端,加强了输入信号,这不就是正反馈吗?

很容易想到,最终的稳态就是uo能输出多低就是多低,如果是单电源供电,那么uo=0V,此时u+=0V,而u-=2.5V,显然,u+不等于u-,也就是说不满足“虚短”
在这里插入图片描述
由上面可知,“虚短”必须是负反馈,但是还需要个条件。就是放大器需要工作在线性放大区,为什么这么说呢?

以前面的负反馈为例子,当输入2.5V时,输出就是5V了,但是假如供电只有3.3V呢?
在这里插入图片描述
显然,输出超不过5V,此时放大器工作在饱和区,顶天了放大器也只能放大到3.3V,因此输出最终达不到5V,那么u-自然也到不了2.5V了,此时u+也就不等于u-了,也就不满足虚短了。

所以说,满足虚短还需要放大器工作在线性放大区。

问题

这里我们可以再深入下,前面我们把运放当作理想运放,也就是增益无穷大,最终得到u+ = u-,也就是虚短。如果增益不是无穷大,而是一个有限的值,那么u+和u-的关系是怎么样的呢?

首先,我们先思考下,运放到底是个什么东西?

其实运放可以看成一个这样的东西,它总能将u+和u-的差值放大Auo倍。想想,是不是这么个玩意儿,其实它自己也不知道外面到底接了什么电路,反正就将u+与u-的差值,放大Auo倍,然后送到输出uo。

因此,天然就有了这么个公式:

uo=(u+ - u-)*Auo

变换一下,得:

u+ - u- =uo/Auo

uo是一个有限的值,如果3.3V供电,uo不会超过3.3,就假定uo=3.3V吧,假如Auo是一百万倍,Auo=1000000,那么:

u+ - u- = 3.3V/1000000 = 3.3uV

可以看到,u+与u-的电压差值只有3.3uV,这是相当小的,我们在分析电路电压的时候,自然可以忽略这个压差,把它们看成是相等的了,也就是“虚短”。同时,我们也可以看到,运放的开环增益Auo越大,那么u+和u-的越接近,更能看成是“虚短”。

小结

以上就是本节的全部内容了,大致梳理了下理想运放的特点,以及虚断和虚短的意思,来源,以及使用的条件。

理想运放特点:

  • 1、增益无穷大

  • 2、输入阻抗无穷大

  • 3、输出阻抗为0

虚断使用条件:

  • 基本无门槛(来源于运放的输入阻抗非常大)

虚短使用的条件:

  • 1、负反馈

  • 2、工作在线性放大区


本文转自------硬件工程师练成之路

1、资源项目源码均已通过严格测试验证,保证能够正常运行; 2、项目问题、技术讨论,可以给博主私信或留言,博主看到后会第一时间与您进行沟通; 3、本项目比较适合计算机领域相关的毕业设计课题、课程作业等使用,尤其对于人工智能、计算机科学与技术等相关专业,更为适合; 4、下载使用后,可先查看README.md或论文文件(如有),本项目仅用作交流学习参考,请切勿用于商业用途。 5、资源来自互联网采集,如有侵权,私聊博主删除。 6、可私信博主看论文后选择购买源代码。 1、资源项目源码均已通过严格测试验证,保证能够正常运行; 2、项目问题、技术讨论,可以给博主私信或留言,博主看到后会第一时间与您进行沟通; 3、本项目比较适合计算机领域相关的毕业设计课题、课程作业等使用,尤其对于人工智能、计算机科学与技术等相关专业,更为适合; 4、下载使用后,可先查看README.md或论文文件(如有),本项目仅用作交流学习参考,请切勿用于商业用途。 5、资源来自互联网采集,如有侵权,私聊博主删除。 6、可私信博主看论文后选择购买源代码。 1、资源项目源码均已通过严格测试验证,保证能够正常运行; 2、项目问题、技术讨论,可以给博主私信或留言,博主看到后会第一时间与您进行沟通; 3、本项目比较适合计算机领域相关的毕业设计课题、课程作业等使用,尤其对于人工智能、计算机科学与技术等相关专业,更为适合; 4、下载使用后,可先查看README.md或论文文件(如有),本项目仅用作交流学习参考,请切勿用于商业用途。 5、资源来自互联网采集,如有侵权,私聊博主删除。 6、可私信博主看论文后选择购买源代码。
应用背景为变电站电力巡检,基于YOLO v4算法模型对常见电力巡检目标进行检测,并充分利用Ascend310提供的DVPP等硬件支持能力来完成流媒体的传输、处理等任务,并对系统性能做出一定的优化。.zip深度学习是机器学习的一个子领域,它基于人工神经网络的研究,特别是利用多层次的神经网络来进行学习和模式识别。深度学习模型能够学习数据的高层次特征,这些特征对于图像和语音识别、自然语言处理、医学图像分析等应用至关重要。以下是深度学习的一些关键概念和组成部分: 1. **神经网络(Neural Networks)**:深度学习的基础是人工神经网络,它是由多个层组成的网络结构,包括输入层、隐藏层和输出层。每个层由多个神经元组成,神经元之间通过权重连接。 2. **前馈神经网络(Feedforward Neural Networks)**:这是最常见的神经网络类型,信息从输入层流向隐藏层,最终到达输出层。 3. **卷积神经网络(Convolutional Neural Networks, CNNs)**:这种网络特别适合处理具有网格结构的数据,如图像。它们使用卷积层来提取图像的特征。 4. **循环神经网络(Recurrent Neural Networks, RNNs)**:这种网络能够处理序列数据,如时间序列或自然语言,因为它们具有记忆功能,能够捕捉数据中的时间依赖性。 5. **长期记忆网络(Long Short-Term Memory, LSTM)**:LSTM 是一种特殊的 RNN,它能够学习长期依赖关系,非常适合复杂的序列预测任务。 6. **生成对抗网络(Generative Adversarial Networks, GANs)**:由两个网络组成,一个生成器和一个判别器,它们相互竞争,生成器生成数据,判别器评估数据的真实性。 7. **深度学习框架**:如 TensorFlow、Keras、PyTorch 等,这些框架提供了构建、训练和部署深度学习模型的工具和库。 8. **激活函数(Activation Functions)**:如 ReLU、Sigmoid、Tanh 等,它们在神经网络中用于添加非线性,使得网络能够学习复杂的函数。 9. **损失函数(Loss Functions)**:用于评估模型的预测与真实值之间的差异,常见的损失函数包括均方误差(MSE)、交叉熵(Cross-Entropy)等。 10. **优化算法(Optimization Algorithms)**:如梯度下降(Gradient Descent)、随机梯度下降(SGD)、Adam 等,用于更新网络权重,以最小化损失函数。 11. **正则化(Regularization)**:技术如 Dropout、L1/L2 正则化等,用于防止模型过拟合。 12. **迁移学习(Transfer Learning)**:利用在一个任务上训练好的模型来提高另一个相关任务的性能。 深度学习在许多领域都取得了显著的成就,但它也面临着一些挑战,如对大量数据的依赖、模型的解释性差、计算资源消耗大等。研究人员正在不断探索新的方法来解决这些问题。
深度学习是机器学习的一个子领域,它基于人工神经网络的研究,特别是利用多层次的神经网络来进行学习和模式识别。深度学习模型能够学习数据的高层次特征,这些特征对于图像和语音识别、自然语言处理、医学图像分析等应用至关重要。以下是深度学习的一些关键概念和组成部分: 1. **神经网络(Neural Networks)**:深度学习的基础是人工神经网络,它是由多个层组成的网络结构,包括输入层、隐藏层和输出层。每个层由多个神经元组成,神经元之间通过权重连接。 2. **前馈神经网络(Feedforward Neural Networks)**:这是最常见的神经网络类型,信息从输入层流向隐藏层,最终到达输出层。 3. **卷积神经网络(Convolutional Neural Networks, CNNs)**:这种网络特别适合处理具有网格结构的数据,如图像。它们使用卷积层来提取图像的特征。 4. **循环神经网络(Recurrent Neural Networks, RNNs)**:这种网络能够处理序列数据,如时间序列或自然语言,因为它们具有记忆功能,能够捕捉数据中的时间依赖性。 5. **长期记忆网络(Long Short-Term Memory, LSTM)**:LSTM 是一种特殊的 RNN,它能够学习长期依赖关系,非常适合复杂的序列预测任务。 6. **生成对抗网络(Generative Adversarial Networks, GANs)**:由两个网络组成,一个生成器和一个判别器,它们相互竞争,生成器生成数据,判别器评估数据的真实性。 7. **深度学习框架**:如 TensorFlow、Keras、PyTorch 等,这些框架提供了构建、训练和部署深度学习模型的工具和库。 8. **激活函数(Activation Functions)**:如 ReLU、Sigmoid、Tanh 等,它们在神经网络中用于添加非线性,使得网络能够学习复杂的函数。 9. **损失函数(Loss Functions)**:用于评估模型的预测与真实值之间的差异,常见的损失函数包括均方误差(MSE)、交叉熵(Cross-Entropy)等。 10. **优化算法(Optimization Algorithms)**:如梯度下降(Gradient Descent)、随机梯度下降(SGD)、Adam 等,用于更新网络权重,以最小化损失函数。 11. **正则化(Regularization)**:技术如 Dropout、L1/L2 正则化等,用于防止模型过拟合。 12. **迁移学习(Transfer Learning)**:利用在一个任务上训练好的模型来提高另一个相关任务的性能。 深度学习在许多领域都取得了显著的成就,但它也面临着一些挑战,如对大量数据的依赖、模型的解释性差、计算资源消耗大等。研究人员正在不断探索新的方法来解决这些问题。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值