fatal error: NvInfer.h: No such file or directory | TensorRT 报错处理 | 【成功解决】

本文介绍了在使用TensorRT时遇到的两个常见编译错误:找不到NvInfer.h头文件和log方法重定义问题。解决方案包括在CMakeLists.txt中正确配置TensorRT路径,并在遇到log方法冲突时考虑回退到CUDA 10 + TensorRT 7的组合。同时,提到了其他可能遇到的库文件找不到的问题,如libmyelin.so.1和libcudnn.so.7。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

9-9
1-1


💜 遇到报错【 fatal error: NvInfer.h: No such file or directory】:


fatal error: NvInfer.h: No such file or directory

#include "NvInfer.h"

通过 find -name NvInfer.h 查找发现 该头文件所在目录


可以发现,该头文件 是属于 TensorRT 下的一个 专有头文件,因此我们的C++ 代码在编译时需要能够找到它

find -name NvInfer.h

./project/project21/modelTrans/tensorRT/tensorRT7/TensorRT-7.0.0.11/include/NvInfer.h
./project/project21/modelTrans/tensorRT/tensorRT7/TensorRT-7.1.3.4/include/NvInfer.h
./project/project21/modelTrans/tensorRT/tensorRt8/TensorRT-8.0.0.3/include/NvInfer.h
./project/project21/modelTrans/transPro/yolo-tensorrt/modules/NvInfer.h


❤️ 解决方法


在 CMakeLists.txt 中 配置 TensorRT-8


# tensorRT
include_directories(/home/墨理/project/project21/modelTrans/tensorRT/tensorRt8/TensorRT-8.0.0.3/include/)
link_directories(/home/墨理/project/project21/modelTrans/tensorRT/tensorRt8/TensorRT-8.0.0.3/lib/)


💜 遇到报错 【NvInferRuntimeCommon.h:1203:18: error: overriding ‘virtual void nvinfer1::ILogger::log】:


crnn/logging.h 下的 log() 方法 和 NvInferRuntimeCommon.h 中的 log() 方法 重复定义

/home/墨理/project/project21Next/modelTrans/tvm/tensorrtx_Cuda11/crnn/logging.h:239:10: error: looser throw specifier for ‘virtual void Logger::log(nvinfer1::ILogger::Severity, const char*)’
     void log(Severity severity, const char* msg) override

...

TensorRT-8.0.0.3/include/NvInferRuntimeCommon.h:1203:18: error:   overriding ‘virtual void nvinfer1::ILogger::log(nvinfer1::ILogger::Severity, const AsciiChar*) noexcept’
     virtual void log(Severity severity, AsciiChar const* msg) noexcept = 0;

观察 crnn/logging.h 发现

    void log(Severity severity, const char* msg) override
    {
        LogStreamConsumer(mReportableSeverity, severity) << "[TRT] " << std::string(msg) << std::endl;
    }

❤️ 解决方法,使用 cuda-10 + tensorRT7 的组合,该冲突即消失


# cuda
include_directories(/usr/local/cuda-10.0/include)
link_directories(/usr/local/cuda-10.0/lib64)


# tensorRT
#include_directories(/home/墨理/project/project21/modelTrans/tensorRT/tensorRt8/TensorRT-8.0.0.3/include/)
#link_directories(/home/墨理/project/project21/modelTrans/tensorRT/tensorRt8/TensorRT-8.0.0.3/lib/)

# tensorRT 7
include_directories(/home/墨理/project/project21/modelTrans/tensorRT/tensorRT7/TensorRT-7.0.0.11/include/)
link_directories(/home/墨理/project/project21/modelTrans/tensorRT/tensorRT7/TensorRT-7.0.0.11/lib/)



💬 其它遇到的报错



🚀🚀 文末专栏推荐部分 🚀🚀


  • 🍖 如果感觉文章看完了不过瘾,还想更进一步,那么可以来【墨理】其他 专栏 看一下哦~
  • 🍖 个人整理的Cuda系列 Linux安装教程【适合小白进阶】
  • 🍖 深度学习、调参搬砖、开发利器【大佬必备】

❤️ 当生成器和判别器趋于平衡,那便是爱情 💜


9-7

9-8


根据提供的引用内容,当编译tengine部署模型时,出现了"fatal error: NvInfer.h: No such file or directory"的错误。这个错误是由于找不到NvInfer.h头文件导致的。要解决这个问题,你需要确保已经正确安装了NvInfer库,并且在编译时能够找到该头文件。 以下是解决这个问题的步骤: 1. 确认NvInfer库是否已正确安装。你可以通过运行以下命令来检查: ```shell dpkg -l | grep nvinfer ``` 如果没有输出结果,说明NvInfer库没有安装。你可以按照NvInfer的安装指南进行安装。 2. 确认NvInfer.h头文件是否存在。你可以使用以下命令来查找该文件: ```shell find / -name NvInfer.h 2>/dev/null ``` 如果没有找到该文件,说明头文件可能没有正确安装或者没有在编译时能够找到。你可以尝试以下解决方法。 3. 添加NvInfer.h头文件的搜索路径。在编译时,可以使用"-I"选项来指定头文件的搜索路径。例如: ```shell g++ -I/path/to/NvInfer/include -c your_file.cpp ``` 这样编译器就能够找到NvInfer.h头文件了。请将"/path/to/NvInfer/include"替换为实际的NvInfer.h头文件所在的路径。 4. 如果你已经正确安装了NvInfer库,但是在编译时仍然找不到NvInfer.h头文件,可能是因为系统环境变量没有正确配置。你可以尝试以下解决方法。 - 在终端中执行以下命令,将NvInfer库的路径添加到LD_LIBRARY_PATH环境变量中: ```shell export LD_LIBRARY_PATH=$LD_LIBRARY_PATH:/path/to/NvInfer/lib ``` 请将"/path/to/NvInfer/lib"替换为实际的NvInfer库所在的路径。 - 在终端中执行以下命令,将NvInfer.h头文件的路径添加到C_INCLUDE_PATH环境变量中: ```shell export C_INCLUDE_PATH=$C_INCLUDE_PATH:/path/to/NvInfer/include ``` 请将"/path/to/NvInfer/include"替换为实际的NvInfer.h头文件所在的路径。 通过以上步骤,你应该能够解决"fatal error: NvInfer.h: No such file or directory"的错误。如果问题仍然存在,请检查你的安装和配置是否正确。
评论 7
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

墨理学AI

不必打赏,关注博主公众号即可

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值