非线性MPC的稳定性

The Stability of Nonlinear MPC

非线性MPC的稳定性

1. Systems

x ˙ = f ( x ( t ) , u ( t ) ) , x ( 0 ) = x 0 , u ( t ) ∈ U \dot{\mathbf{x}}=\bm{f}\big(\mathbf{x}(t),\mathbf{u}(t)\big),\quad \mathbf{x}(0)=\rm{x}_0,\\ \quad\mathbf{u}(t)\in U x˙=f(x(t),u(t)),x(0)=x0,u(t)U

2 Assumptions

  • f \bm{f} f is twice continuously differentiable and f ( 0 , 0 ) = 0 \bm{f}(\bm{0},\bm{0})=\bm{0} f(0,0)=0, i.e. x = 0 \mathbf{x}=\bm{0} x=0 is an equilibrium under zero input.
  • U U U is compact, convex and 0 \bm{0} 0 is contained in U U U.
  • The jacobian linearization of system ( 1 ) (1) (1) is stabilizable.

3. Standard MPC formulation

min ⁡ u ( ⋅ ) J ( x ( t ) , u ( ⋅ ) ) \min _{u(\cdot)} J(\mathbf{x}(t), \mathbf{u}(\cdot)) u()minJ(x(t),u())
with

J ( x ( t ) , u ( ⋅ ) ) = ∫ t t + T p ( ∥ x ( τ ) ( x ( t ) , t ) ∥ Q 2 + ∥ u ( τ ) ∥ R 2 ) d τ + ∥ x ( t + T p ; x ( t ) , t ) ∥ P 2 (2) J(\mathbf{x}(t), \mathbf{u}(\cdot))=\int_{t}^{t+T_{p}}\left(\|\mathbf{x}(\tau)(\mathbf{x}(t), t)\|_{Q}^{2}+\|\mathbf{u}(\tau)\|_{R}^{2}\right) \mathrm{d} \tau \\ \quad\quad\quad\quad+\left\|\mathbf{x}\left(t+T_{\mathrm{p}} ; \mathbf{x}(t), t\right)\right\|_{P}^{2}\tag{2} J(x(t),u())=tt+Tp(x(τ)(x(t),t)Q2+u(τ)R2)dτ+x(t+Tp;x(t),t)P2(2)

subject to
x ˙ = f ( x , u ) , x ( t ; x ( t ) , t ) = x ( t ) u ( τ ) ∈ U , τ ∈ [ t , t + T p ] x ( t + T p ; x ( t ) , t ) ∈ Ω (3) \dot{\mathbf{x}}=\mathbf{f}(\mathbf{x}, \mathbf{u}), \quad \mathrm{x}(t ; \mathbf{x}(t), t)=\mathbf{x}(t)\\ \mathbf{u}(\tau) \in U, \quad \tau \in\left[t, t+T_{\mathrm{p}}\right]\\ \mathbf{x}\left(t+T_{\mathrm{p}} ; \mathbf{x}(t), t\right) \in \Omega \tag{3} x˙=f(x,u),x(t;x(t),t)=x(t)u(τ)U,τ[t,t+Tp]x(t+Tp;x(t),t)Ω(3)

4. Main ideas

  • Since the finite horizon optimization property of MPC can not guarantee the stability, while the infinite may do more, such as the LQR.
  • By introducing terminal state cost and terminal inequality constraint, the terminal states can be forced to be in the terminal region, which is selected as the attraction region around origin and is invariant under local linear feedback controllers.
  • When trajectory under optimization goes into the terminal region at t + T p t+T_p t+Tp, the states will stay in the region when imposing designed linear state feedback.
  • It can be proved that the infinite integral cost ∫ s ∞ ( ∥ x ( s ) ( x ( t ) , t ) ∥ Q 2 + ∥ u ( s ) ∥ R 2 ) d s \int_{s}^{\infty}\left(\|\mathbf{x}(s)(\mathbf{x}(t), t)\|_{Q}^{2}+\|\mathbf{u}(s)\|_{R}^{2}\right) \mathrm{d} s s(x(s)(x(t),t)Q2+u(s)R2)ds starting from invariant set Ω \Omega Ω is always less equal than the terminal cost in ( 2 ) (2) (2).
  • The optimal value function can thus be proved to be non-increasing. This further leads to the stability.
  • Although the local state feedback is used to demonstrate the stability, MPC is implemented in online manner at every time step and the linear feedback control law is never used. The finite horizon control can thus be proved in a quasi-infinite way.

5. Method

  • Solve the linear state feedback control problem to find a locally stabilizing feedback gain K after jacobian linearization around origin.
    x ˙ = A x + B u \dot{\mathbf{x}}=A\mathbf{x}+B\mathbf{u} x˙=Ax+Bu A = ∂ f ∂ x ( 0 , 0 ) , B = ∂ f ∂ u ( 0 , 0 ) A=\frac{\partial{\bm{f}}}{\partial{\mathbf{x}}}(\bm{0}, \bm{0}),\quad B=\frac{\partial{\bm{f}}}{\partial{\mathbf{u}}}(\bm{0}, \bm{0}) A=xf(0,0),B=uf(0,0) u = K x such that A k = A + B K is asymptotically stable \mathbf{u}=K\mathbf{x}\quad \text{such that} \quad A_k=A+BK \quad\text{is asymptotically stable} u=Kxsuch thatAk=A+BKis asymptotically stable

  • Solve the Lyapunov equation with a suitable κ ∈ [ 0 , + ∞ ] \kappa\in[0,+\infty] κ[0,+]. κ \kappa κ should be selected (usually depends on the eigenvalues of A k A_k Ak) to make sure that the equation has unique positive definite and symmetric solutions P P P.

  • Find the largest possible set Ω β = { x ∣ x ⊤ P x ≤ β } \Omega_\beta=\{\mathbf{x}|\mathbf{x}^{\top}P\mathbf{x}\leq\beta\} Ωβ={xxPxβ}, such that K x ∈ U K\mathbf{x}\in U KxU for all x ∈ Ω β \mathbf{x}\in\Omega_\beta xΩβ. This ensures that the state feedback control respects the control constraints.

  • Find the largest possible set Ω α = { x ∣ x ⊤ P x ≤ α , α ≤ β } \Omega_\alpha=\{\mathbf{x}|\mathbf{x}^{\top}P\mathbf{x}\leq\alpha, \alpha\leq\beta\} Ωα={xxPxα,αβ}, such that the condition of non-increasing-value-function is satisfied in Ω α \Omega_\alpha Ωα.

6. Feasibility and stability

The feasibility at any t > 0 t>0 t>0 can be guaranteed if the feasibility is satisfied at t = 0 t=0 t=0. The stability is guaranteed by the feasibility and non-increasing property mentioned above.

7. Remarks

  • If there is no linear feedback controller can locally asymptotically stabilize the nonlinear system, the attraction region Ω α \Omega_\alpha Ωα contracts to the origin. In accordance, the terminal inequality ( 3 ) (3) (3) reduces to equality constraint
    x ( t + T p ) = 0 . \mathbf{x}(t+T_p)=\bm{0}. x(t+Tp)=0.
  • The conditions above are only sufficient and not necessary. The fact
    that the linearized system is not stabilizable does not imply that
    there exists no linear feedback controller being able to stabilize
    the nonlinear system locally.

Reference:

Chen, H., & Allgöwer, F. (1998). A quasi-infinite horizon nonlinear model predictive control scheme with guaranteed stability. Automatica, 34(10), 1205-1217.

8. Path Following

  • Transfer the original problem into the error dynamic problem with some conditions such that x ˙ e = g ( x e , u e ) \dot{\mathbf{x}}_e=\mathbf{g}(\mathbf{x}_e,\mathbf{u}_e) x˙e=g(xe,ue), g ( 0 , 0 ) = 0 \mathbf{g}(\bm{0},\bm{0})=0 g(0,0)=0.
  • Solve the LMI problem based on PLDI to obtain the penalty matrix P P P and feedback gain K K K.
  • Find the largest invariant terminal region.

Reference:

Yu, S., Li, X., Chen, H., & Allgöwer, F. (2015). Nonlinear model predictive control for path following problems. International Journal of Robust and Nonlinear Control, 25(8), 1168-1182.

  • 0
    点赞
  • 10
    收藏
    觉得还不错? 一键收藏
  • 6
    评论
非线性MPC是一种在MATLAB中使用的先进控制技术,用于处理非线性系统的控制问题。与传统的线性MPC不同,非线性MPC考虑了非线性系统动力学的影响,因此能更准确地预测和控制系统的行为。 在MATLAB中,非线性MPC的实现过程通常包含以下几个步骤: 1. 系统建模:首先,需要对待控制的非线性系统进行建模。这通常涉及到对系统非线性动态方程进行数学描述,并确定系统的状态变量和控制向量。 2. 线性化:在非线性系统建模完成后,需要将其线性化,得到一个线性近似模型。线性化的过程可以通过牛顿-拉寇逊法或雅可比矩阵方法来实现。 3. 目标定义:在控制设计前,需要明确系统的性能指标和控制目标。例如,可以设定输出追踪误差最小化、控制输入的幅值和变化率约束等。 4. 控制器设计:通过求解优化问题,得到控制器的解。在非线性MPC中,优化问题的目标函数包括系统状态和控制向量的权重,以及约束条件列联结构和非线性动力学方程。 5. 仿真和验证:使用MATLAB中的仿真工具进行验证和评估设计的非线性MPC控制器。可以通过模拟实验来测试控制器的性能,如响应速度、稳定性、鲁棒性等。 非线性MPC在处理复杂的非线性系统控制问题方面具有重要的应用价值。MATLAB提供了丰富的工具和函数库,可以有效地实现非线性MPC控制器的设计和验证。通过使用MATLAB中的非线性MPC技术,可以更好地满足实际系统的控制需求,并实现更高的控制性能和稳定性

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论 6
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值