模型预测控制Paolo Falcone 博士面试 (二) - MPC控制的稳定性

本文通过博士面试案例探讨模型预测控制(MPC)的稳定性问题。对比LQR控制,分析了MPC在考虑输入约束、状态约束及预测步长变化时对系统稳定性的影响,并指出标准MPC可能导致可行性缺失和稳定性无法保证。引入终端成本和约束有望确保MPC的稳定性和可行性。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

第二篇博文推了太久,时间都用来学数据结构和算法,控制专业最大的问题在于很多人只会使用Matlab/Simulink, 不懂数据结构和算法不会写代码,幸亏我认清形式比较早,希望学控制的同学们多写代码,什么时候能用C/C++写出各种数值优化算法的代码才好找工作啊,光懂理论无法C++实现都是扯淡。

言归正传,一般博士面试第二次面试都是考验一下候选人的学术能力。所以第二次面试教授主要是考验我对上个博客中提到的那篇论文的稳定性的理解和评估. 这篇博客主要结合面试来对模型预测控制的稳定性进行一次总结, 纯理论分析对于真实的自动驾驶MPC效果尚未可知。

我们以线性系统作为例子, 假设线性系统的方程为
x + = A x + B u y = C x + D u x^{+} = A x + Bu \\ y = Cx + Du x+=Ax+Buy=Cx+Du
输入量和状态量都存在线性约束

LQR控制一般是针对infinite horizon 的, 优化问题定义如下
J ∞ ( x ) = m i n x , u ∑ i = 0 ∞ x i T Q x i + u i T R u i s . t . x i + 1 = A x i + B u i x 0 = x J^{\infty}(x) = min_{x, u} \sum_{i = 0}^{\infty}x^{T}_{i}Qx_{i} + u_{i}^{T}Ru_{i} \\ s.t. x_{i+1} = Ax_{i} + Bu_{i} \\ x_{0} = x J(x)=minx,ui=0xiTQxi+uiTRuis.t.xi+1=Axi+Buix0=x
MPC优化问题一般定义如下:
J ∗ ( x ) = m i n x , u ∑ i = 0 N − 1 x i T Q x i + u i T R u i s . t . x i + 1 = A x i + B u i x 0 = x C x i + D u i ≤ b J^{*}(x) = min_{x, u} \sum_{i = 0}^{N-1}x^{T}_{i}Qx_{i} + u_{i}^{T}Ru_{i} \\ s.t. x_{i+1} = Ax_{i} + Bu_{i} \\ x_{0} = x \\ Cx_{i} + Du_{i} \leq b J(x)=minx,ui=0N1xiTQxi+uiTRuis.t.xi+1=Axi+Buix0=xCxi+Duib
假设 Q = Q T ≥ 0 Q=Q^{T} \geq 0 Q=QT0, R = R T ≥ 0 R=R^{T} \geq 0

评论 4
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值