导读
在做OCR票据类识别的时候经常会遇到一些票据上会有印章,而对于的文字检测
和文字识别
模型而言,印章的存在一定会影响模型识别的准确率,所以通常我们都是先将图片去除印章之后,再将图片送入到文字检测和文字识别模型中。
本篇文章就介绍一个比较简单的方法用来去除红色印章
移除红色印章
我们通过分离图片的通道,提取图片的红色通道,然后再通过阈值来去除红色的印章
import cv2
import numpy as np
def remove_red_seal(input_img):
# 分离图片的通道
blue_c, green_c, red_c = cv2.split(input_img)
#利用大津法自动选择阈值
thresh, ret = cv2.threshold(red_c, 0, 255,cv2.THRESH_OTSU)
#对阈值进行调整
filter_condition = int(thresh * 0.90)
#移除红色的印章
_, red_thresh = cv2.threshold(red_c, filter_condition, 255, cv2.THRESH_BINARY)
# 把图片转回3通道
result_img = np.expand_dims(red_thresh, axis=2)
result_img = np.concatenate((result_img, result_img, result_img), axis=-1)
return result_img
input_img = cv2.imread("1.jpg")
remove_seal = remove_red_seal(input_img)
cv2.imwrite("remove_seal.jpg",remove_seal)
注意
:对于不同的场景,你可能需要对阈值进行微调(百分比),以获取你认为的最佳阈值,百分比越小红色印章移除的越干净
,同时也有可能会移除部分文字信息。
threshold函数
threshold(src, thresh, maxval, type[, dst])->ret,dst
src
::灰度图或单通道图片thresh
:阈值maxval
:最大值type
:阈值类型
这里重点介绍一下type
参数的取值,它的取值如下图所示
在对图片做二值化处理的时候需要设置一个阈值
来对图片进行二值化处理,然而在部分复杂的场景下,如果采用固定的阈值可能在某些场景下效果不错,换到有些场景时效果就不行了。
这时候我们就会想要用自动的阈值,这时候就可以用到THRESH_OTSU
和THRESH_TRIANGLE
这两个参数,它们会根据图片的灰度直方图来计算出一个阈值
将图片分为前景和背景,下面我们来介绍一下它们是如何实现的。
THRESH_OTSU
大津法(OTSU):也被称为是最大类间差法
,被认为是图像分割阈值选择的最佳算法
,计算简单,鲁棒性较好,不受图像亮度和和对比度的影响
,因此在数字图像处理中被广泛的使用。
它根据图像的灰度直方图
,将图像分为前景
和背景
两个部分。因为方差是度量图像灰度分布是否均匀,如果图像的背景和前景之间的差别越大,那么它们之间的类间方差差距也会越大
。所以,如果我们能够保证图像前景和背景的灰度直方图方差差距最大时,就能让前景和背景分离的效果达到最佳,实际效果还是取决于具体的场景
,可能需要根据不同的需求对阈值进行微调。
- 公式推导
其实只要抓住大津法
的核心思想最大化前景和背景的方差
要推导公式用代码来实现并不难,接下来我们来推导一下这个公式。
假设灰度
T
T
T是图像分割前景和背景的最佳阈值,图像上任意一点属于前景的概率
为
ω
1
\omega_1
ω1,属于背景的概率
为
ω
2
\omega_2
ω2。图像前景的平均灰度值
为
μ
1
\mu_1
μ1,背景的平均灰度值
为
μ
2
\mu_2
μ2,所以图像的平均灰度值
μ
\mu
μ为
μ
=
ω
1
μ
1
+
ω
2
μ
2
\mu = \omega_1 \mu_1 + \omega_2\mu_2
μ=ω1μ1+ω2μ2
根据类间的方差计算公式,前景和背景的类间方差计算如下
δ
2
=
ω
1
(
μ
1
−
μ
)
2
+
ω
2
(
μ
2
−
μ
)
\delta^2=\omega_1(\mu_1-\mu)^2+\omega_2(\mu_2-\mu)
δ2=ω1(μ1−μ)2+ω2(μ2−μ)
因为
ω
1
+
ω
2
=
1
\omega_1+\omega_2 = 1
ω1+ω2=1
结合上面3个式子可得
δ
2
=
ω
1
(
μ
1
−
(
ω
1
μ
1
+
ω
2
μ
2
)
)
2
+
ω
2
(
μ
2
−
(
ω
1
μ
1
+
ω
2
μ
2
)
)
2
=
ω
1
(
(
1
−
ω
1
)
μ
1
−
ω
2
μ
2
)
2
+
ω
2
(
(
1
−
ω
2
)
μ
2
−
ω
1
μ
1
)
2
=
ω
1
(
ω
2
μ
1
−
ω
2
μ
2
)
2
+
ω
2
(
ω
1
μ
2
−
ω
1
μ
1
)
2
=
ω
1
ω
2
2
(
μ
1
−
μ
2
)
2
+
ω
2
ω
1
2
(
μ
1
−
μ
2
)
=
ω
1
ω
2
(
μ
1
−
μ
2
)
2
(
ω
2
+
ω
1
)
=
ω
1
ω
2
(
μ
1
−
μ
2
)
2
\begin{aligned} \delta^2&=\omega_1(\mu_1-(\omega_1\mu_1+\omega_2\mu_2))^2+\omega_2(\mu_2-(\omega_1\mu_1+\omega_2\mu_2))^2 \\ &= \omega_1((1-\omega_1)\mu_1-\omega_2\mu_2)^2+\omega_2((1-\omega_2)\mu_2-\omega_1\mu_1)^2 \\ &=\omega_1(\omega_2\mu_1-\omega_2\mu_2)^2+\omega_2(\omega_1\mu_2-\omega_1\mu_1)^2 \\ &=\omega_1\omega_2^2(\mu_1-\mu_2)^2+\omega_2\omega_1^2(\mu_1-\mu_2) \\ &=\omega_1\omega_2(\mu_1-\mu_2)^2(\omega_2+\omega_1)\\ &=\omega_1\omega_2(\mu_1-\mu_2)^2 \end{aligned}
δ2=ω1(μ1−(ω1μ1+ω2μ2))2+ω2(μ2−(ω1μ1+ω2μ2))2=ω1((1−ω1)μ1−ω2μ2)2+ω2((1−ω2)μ2−ω1μ1)2=ω1(ω2μ1−ω2μ2)2+ω2(ω1μ2−ω1μ1)2=ω1ω22(μ1−μ2)2+ω2ω12(μ1−μ2)=ω1ω2(μ1−μ2)2(ω2+ω1)=ω1ω2(μ1−μ2)2
为了方便我们后面编程来实现,还需要对上式做一些调整,这里引入几个参数
p
i
p_i
pi表示灰度值等于
i
i
i的概率,图像的灰度取值在
[
0
,
255
]
[0,255]
[0,255]范围内取整数。假设灰度值
t
t
t可以使图像前景和背景的方差最大,
m
1
m_1
m1为灰度级
t
t
t的累加均值,
m
m
m为图像的灰度级
L
L
L的均值累加
ω
1
=
∑
i
=
0
t
p
i
m
1
=
∑
i
=
0
t
i
p
i
m
=
∑
i
=
0
L
i
p
i
\begin{aligned} \omega_1=& \sum_{i=0}^{t}p_i \\ m_1=&\sum_{i=0}^{t}ip_i\\ m=&\sum_{i=0}^{L}ip_i\\ \end{aligned}
ω1=m1=m=i=0∑tpii=0∑tipii=0∑Lipi
可得
μ
1
\mu_1
μ1和
μ
2
\mu_2
μ2
μ
1
=
∑
i
=
0
t
i
p
i
ω
1
=
m
1
ω
1
μ
2
=
∑
i
=
t
+
1
L
i
p
i
ω
2
=
∑
i
=
0
L
i
p
i
−
∑
i
=
0
t
i
p
i
ω
2
=
m
−
m
1
ω
2
\begin{aligned} \mu_1 &=\frac{\sum_{i=0}^{t}ip_i}{\omega_1}=\frac{m_1}{\omega_1}\\ \mu_2 &=\frac{\sum_{i=t+1}^{L}ip_i}{\omega_2}=\frac{\sum_{i=0}^{L}ip_i-\sum_{i=0}^{t}ip_i}{\omega_2}=\frac{m-m_1}{\omega_2}\\ \end{aligned}
μ1μ2=ω1∑i=0tipi=ω1m1=ω2∑i=t+1Lipi=ω2∑i=0Lipi−∑i=0tipi=ω2m−m1
接下来我们对
δ
2
\delta^2
δ2结合上面的式子做个变换
δ
2
=
ω
1
ω
2
(
μ
1
−
μ
2
)
2
=
ω
1
ω
2
(
m
1
ω
1
−
m
−
m
1
ω
2
)
2
=
ω
1
ω
2
1
ω
1
2
ω
2
2
(
m
1
ω
2
−
m
ω
1
+
m
1
ω
1
)
2
=
(
m
1
−
m
ω
1
)
2
ω
1
ω
2
=
(
m
1
−
m
ω
1
)
2
ω
1
(
1
−
ω
1
)
\begin{aligned} \delta^2 &=\omega_1\omega_2(\mu_1-\mu_2)^2\\ &=\omega_1\omega_2(\frac{m_1}{\omega_1}-\frac{m-m_1}{\omega_2})^2\\ &=\omega_1\omega_2\frac{1}{\omega_1^2\omega_2^2}(m_1\omega_2-m\omega_1+m_1\omega_1)^2\\ &=\frac{(m_1-m\omega_1)^2}{\omega_1\omega_2}\\ &=\frac{(m_1-m\omega_1)^2}{\omega_1(1-\omega_1)} \end{aligned}
δ2=ω1ω2(μ1−μ2)2=ω1ω2(ω1m1−ω2m−m1)2=ω1ω2ω12ω221(m1ω2−mω1+m1ω1)2=ω1ω2(m1−mω1)2=ω1(1−ω1)(m1−mω1)2
我们只需要使上式最大化即可
- 代码实现OTSU
上面我们推导了大津法
的公式,以及如何来求解阈值
划分前景和背景,下面我们用python来实现这个算法
import numpy as np
def Otsu(gray_img,L=256):
#只处理二维数组
assert len(gray_img.shape) == 2
#创建一个灰度级数组
gray_array = np.arange(0,L)
#用来统计灰度级数组中每个灰度出现的次数
gray_counts = np.zeros(shape=L,dtype=np.int32)
#统计灰度图中每个灰度值出现的次数
img_gray_value,img_gray_counts = np.unique(gray_img,return_counts=True)
#将图片的灰度级信息拷贝到灰度级数组中
gray_counts[img_gray_value] = img_gray_counts
#计算每个灰度值出现的频率
gray_frequency = gray_counts / np.sum(gray_counts)
#计算频率的累加,也就是前景或背景类的概率
p_array = np.cumsum(gray_frequency)
#灰度级的均值累加
m_array = np.cumsum(gray_array * gray_frequency)
#计算以每个[0,255]灰度作为阈值计算方差
gray_var = (m_array - m_array[-1]*p_array)**2 / (p_array*(1-p_array)+1e-6)
#计算方差最大的下标值也就是最终的阈值
return np.argmax(gray_var)
比较一下我们自己实现的大津法
和opencv
内置的函数
def remove_red_seal(input_img):
# 分离图片的通道
blue_c, green_c, red_c = cv2.split(input_img)
#利用大津算法自动选择阈值
t1 = time.time()
thresh, ret = cv2.threshold(red_c, 0, 255,cv2.THRESH_OTSU)
t2 = time.time()
print(t2 - t1)
print(thresh)
print(Otsu(red_c))
print(time.time()-t2)
input_img = cv2.imread("2.jpg")
remove_seal = remove_red_seal(input_img)
最终两者输出的阈值都是160,不过python实现的代码是opencv时间的25倍
左右,所以python在这方面对比c确实是硬伤。
THRESH_TRIANGLE
三角法
(TRIANGLE):是基于直方图利用几何的方法
来求分割的最佳阈值,假设的成立条件是直方图的最大波峰在靠近最亮的一侧
,然后再通过三角形来求解最大的距离
找到最佳阈值。
如图所示,在灰度直方图上,从最高峰
b
m
a
x
b_{max}
bmax到最暗对应直方图的
b
m
i
n
b_{min}
bmin构造一条直线,然后从
b
m
i
n
b_{min}
bmin到
b
m
a
x
b_{max}
bmax开始计算到直线的垂直距离
d
d
d,当
d
d
d达到最大时,此时所对应的灰度值
t
t
t就是分割图像的最佳阈值
接下来我们看看,使用三角法求解阈值值的整个流程,这里引入两个参数灰度级 L L L和频率 f f f:
- 将图片转换为灰度图,通过OpenCV可以很容易实现
- 计算灰度图的灰度直方图,也就是每个灰度级 L L L对应的频率 f f f
- 对灰度直方图进行排序,按灰度级进行排序,由小到大
- 确定直方图最大值(也就是 f f f)所对应灰度级 L L L的位置,如果在左侧(灰度值小)就需要对灰度直方图进行翻转
- 根据左侧边界的灰度级点 ( L m i n , f m i n ) (L_{min},f_{min}) (Lmin,fmin)和最亮部分频率最大对应的灰度级点 ( L m a x , f m a x ) (L_{max},f_{max}) (Lmax,fmax),由两点式我们可以确定这条直线
- 计算
L
m
i
n
L_{min}
Lmin到
L
m
a
x
{L_{max}}
Lmax的任意一点
(
L
,
f
)
(L,f)
(L,f)到直线的距离
d
d
d,当
d
d
d最大时所对应的
L
L
L就是我们要求的最佳阈值
- 代码实现
def Triangle(gray_img,L=256):
assert len(gray_img.shape) == 2
# 用来统计灰度级数组中每个灰度出现的次数
gray_counts = np.zeros(shape=L, dtype=np.int32)
# 统计灰度图中每个灰度值出现的次数
img_gray_value, img_gray_counts = np.unique(gray_img, return_counts=True)
# 将图片的灰度级信息拷贝到灰度级数组中
gray_counts[img_gray_value] = img_gray_counts
#找到左侧和右侧的边界
left_bound = img_gray_value[0]
if left_bound > 0:
left_bound -= 1
right_bound = img_gray_value[-1]
if right_bound < L - 1:
right_bound += 1
#获取频率最大对应的灰度值
max_gray = np.argmax(gray_counts)
#计算最大灰度值对应的频率大小
max_fre = gray_counts[max_gray]
#用来记录是否翻转
flip_flag = False
#如果最大频率的灰度值在靠近左侧位置对齐进行翻转
if (max_gray - left_bound) < (right_bound - max_gray):
gray_counts = gray_counts[::-1]
max_gray = L - 1 - max_gray
left_bound = L - 1 - right_bound
flip_flag = True
#用来记录最大的距离
max_dist = 0
#记录最终的阈值
th = 0
#直方图最大值对应的点
point1 = np.array([max_gray,max_fre])
#直方图最小值对应的点
point2 = np.array([left_bound,gray_counts[left_bound]])
#找到距离最大对应的灰度值
for i in range(left_bound+1,max_gray+1):
point3 = np.array([i,gray_counts[i]])
vec1 = point3 - point2
vec2 = point1 - point2
#计算点到直线的距离,实际上分母可以不要
dist = abs(np.cross(vec1,vec2)) / np.linalg.norm(point1 - point2)
if dist > max_dist:
max_dist = dist
th = i
th -= 1
if flip_flag:
th = L - 1 - th
return th
大津法和三角法的对比
- 共同点:两者都是
算法自动计算出阈值
,不需要指定阈值 - 不同点:大津法适合
双波峰
的灰度直方图,三角法适合单波峰
的灰度直方图
opencv显示灰度直方图
from matplotlib import pyplot as plt
input_img = cv2.imread("1.jpg")
blue_c, green_c, red_c = cv2.split(input_img)
hist = cv2.calcHist([red_c],[0],None,[256],[0,256])
plt.plot(hist)
plt.show()
参考: