三个三维矢量叉乘公式(拉格朗日矢量公式)推导(非坐标法)

0 简单情况

  先从简单的情况开始推导,考虑三个向量 a ⃗ , b ⃗ , c ⃗ \vec{a},\vec{b},\vec{c} a ,b ,c 在同一个平面,其中 c ⃗ ⊥ a ⃗ \vec{c} \perp \vec{a} c a ,如下图所示,求取 ( a ⃗ × b ⃗ ) × c ⃗ (\vec{a} \times \vec{b}) \times \vec{c} (a ×b )×c
在这里插入图片描述
  易得 ( a ⃗ × b ⃗ ) × c ⃗ (\vec{a} \times \vec{b}) \times \vec{c} (a ×b )×c a ⃗ \vec{a} a 反向,我们设:
( a ⃗ × b ⃗ ) × c ⃗ = k ⋅ a ⃗ (1) (\vec{a} \times \vec{b}) \times \vec{c}=k \cdot \vec{a} \tag{1} (a ×b )×c =ka (1)
  其中 k k k为常数,利用长度的性质:
∣ a ⃗ ∣ ∣ b ⃗ ∣ ∣ c ⃗ ∣ s i n ( < a , b > ) = ∣ k ∣ ∣ a ⃗ ∣ (2) |\vec{a}||\vec{b}||\vec{c}|sin(<a,b>)=|k||\vec{a}| \tag{2} a b c sin(<a,b>)=ka (2)
  其中 < a , b > <a,b> <a,b>表示向量 a ⃗ , b ⃗ \vec{a},\vec{b} a ,b 的夹角,根据几何关系可以得到:
∣ b ⃗ ∣ ∣ c ⃗ ∣ s i n ( π 2 ± < b , c > ) = ∣ k ∣ (3) |\vec{b}||\vec{c}|sin(\frac{\pi}{2} \pm <b,c>)=|k|\tag{3} b c sin(2π±<b,c>)=k(3)
  进而:
∣ k ∣ = ∣ b ⃗ ∣ ∣ c ⃗ ∣ c o s ( < b , c > ) = b ⃗ ⋅ c ⃗ (4) |k|=|\vec{b}||\vec{c}|cos(<b,c>)=\vec{b} \cdot \vec{c}\tag{4} k=b c cos(<b,c>)=b c (4)
  得出结论此时,根据几何关系可得正负号:
( a ⃗ × b ⃗ ) × c ⃗ = − ( b ⃗ ⋅ c ⃗ ) ⋅ a ⃗ (5) (\vec{a} \times \vec{b}) \times \vec{c}=-(\vec{b} \cdot \vec{c}) \cdot \vec{a}\tag{5} (a ×b )×c =(b c )a (5)
  同理假设 c ⃗ ⊥ b ⃗ \vec{c} \perp \vec{b} c b ,此时结果向量与 b ⃗ \vec{b} b 同向,可以得出结论
( a ⃗ × b ⃗ ) × c ⃗ = ( a ⃗ ⋅ c ⃗ ) ⋅ b ⃗ (6) (\vec{a} \times \vec{b}) \times \vec{c}=(\vec{a} \cdot \vec{c}) \cdot \vec{b}\tag{6} (a ×b )×c =(a c )b (6)

1 由简单情况到一般情况.

  对于任意三维空间向量 c ⃗ \vec{c} c 可以分解为垂直 a ⃗ , b ⃗ \vec{a},\vec{b} a ,b 所在平面的分量 c ⃗ a b \vec{c}_{ab} c ab,与 a ⃗ \vec{a} a 垂直的分量 c ⃗ a \vec{c}_{a} c a,与 b ⃗ \vec{b} b 垂直的分量 c ⃗ b \vec{c}_{b} c b
( a ⃗ × b ⃗ ) × c ⃗ = ( a ⃗ × b ⃗ ) × ( c ⃗ a + c ⃗ b + c ⃗ a b ) (7) (\vec{a} \times \vec{b}) \times \vec{c}=(\vec{a} \times \vec{b}) \times (\vec{c}_{a}+\vec{c}_{b}+\vec{c}_{ab})\tag{7} (a ×b )×c =(a ×b )×(c a+c b+c ab)(7)
  于是根据式(5)(6)以及垂直关系:
( a ⃗ × b ⃗ ) × c ⃗ = ( a ⃗ ⋅ c b ⃗ ) ⋅ b ⃗ − ( b ⃗ ⋅ c a ⃗ ) ⋅ a ⃗ = ( a ⃗ ⋅ c ⃗ ) ⋅ b ⃗ − ( b ⃗ ⋅ c ⃗ ) ⋅ a ⃗ (8) (\vec{a} \times \vec{b}) \times \vec{c}=(\vec{a} \cdot \vec{c_b}) \cdot \vec{b}-(\vec{b} \cdot \vec{c_a}) \cdot \vec{a}=(\vec{a} \cdot \vec{c}) \cdot \vec{b}-(\vec{b} \cdot \vec{c}) \cdot \vec{a}\tag{8} (a ×b )×c =(a cb )b (b ca )a =(a c )b (b c )a (8)

2 三个三维矢量连续叉乘的矩阵公式

2.1 叉乘的矩阵表示

  后文将不再涉及未知数,字母将直接表示矢量。对于一个矢量 w w w其叉乘任意矢量 v v v,等价于一个矩阵乘 v v v,该矩阵记为 w × w_{\times} w×,其值如下:
w × v = w × v = [ 0 − w z w y w z 0 − w x − w y w x 0 ] v (9) w \times v=w_{\times}v=\begin{bmatrix} 0 & -w_z & w_y \\ w_z & 0 & -w_x \\ -w_y & w_x & 0 \end{bmatrix}v\tag{9} w×v=w×v=0wzwywz0wxwywx0v(9)
  该矩阵的性质如下图,本文只针对连续叉乘的性质(下图性质(7)(8))进行证明,其余的性质比较简单:
在这里插入图片描述
  先看倒数第二条性质(8),根据式8:
( a × b ) × c = b a T c − a b T c = ( b a T − a b T ) c (10) (a \times b) \times c=ba^Tc-ab^Tc=(ba^T-ab^T)c\tag{10} (a×b)×c=baTcabTc=(baTabT)c(10)
  从而得:
( a × b ) × = b a T − a b T (11) (a\times b)_{\times}=ba^T-ab^T\tag{11} (a×b)×=baTabT(11)
  性质(9)很容易验证,那么结合性质(8)可以轻易推出性质(7)

  • 8
    点赞
  • 28
    收藏
    觉得还不错? 一键收藏
  • 11
    评论
评论 11
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值