三个三维矢量叉乘公式(拉格朗日矢量公式)推导(非坐标法)

0 简单情况

  先从简单的情况开始推导,考虑三个向量 a ⃗ , b ⃗ , c ⃗ \vec{a},\vec{b},\vec{c} a ,b ,c 在同一个平面,其中 c ⃗ ⊥ a ⃗ \vec{c} \perp \vec{a} c a ,如下图所示,求取 ( a ⃗ × b ⃗ ) × c ⃗ (\vec{a} \times \vec{b}) \times \vec{c} (a ×b )×c
在这里插入图片描述
  易得 ( a ⃗ × b ⃗ ) × c ⃗ (\vec{a} \times \vec{b}) \times \vec{c} (a ×b )×c a ⃗ \vec{a} a 反向,我们设:
( a ⃗ × b ⃗ ) × c ⃗ = k ⋅ a ⃗ (1) (\vec{a} \times \vec{b}) \times \vec{c}=k \cdot \vec{a} \tag{1} (a ×b )×c =ka (1)
  其中 k k k为常数,利用长度的性质:
∣ a ⃗ ∣ ∣ b ⃗ ∣ ∣ c ⃗ ∣ s i n ( < a , b > ) = ∣ k ∣ ∣ a ⃗ ∣ (2) |\vec{a}||\vec{b}||\vec{c}|sin(<a,b>)=|k||\vec{a}| \tag{2} a b c sin(<a,b>)=ka (2)
  其中 < a , b > <a,b> <a,b>表示向量 a ⃗ , b ⃗ \vec{a},\vec{b} a ,b 的夹角,根据几何关系可以得到:
∣ b ⃗ ∣ ∣ c ⃗ ∣ s i n ( π 2 ± < b , c > ) = ∣ k ∣ (3) |\vec{b}||\vec{c}|sin(\frac{\pi}{2} \pm <b,c>)=|k|\tag{3} b c sin(2π±<b,c>)=k(3)
  进而:
∣ k ∣ = ∣ b ⃗ ∣ ∣ c ⃗ ∣ c o s ( < b , c > ) = b ⃗ ⋅ c ⃗ (4) |k|=|\vec{b}||\vec{c}|cos(<b,c>)=\vec{b} \cdot \vec{c}\tag{4} k=b c cos(<b,c>)=b c (4)
  得出结论此时,根据几何关系可得正负号:
( a ⃗ × b ⃗ ) × c ⃗ = − ( b ⃗ ⋅ c ⃗ ) ⋅ a ⃗ (5) (\vec{a} \times \vec{b}) \times \vec{c}=-(\vec{b} \cdot \vec{c}) \cdot \vec{a}\tag{5} (a ×b )×c =(b c )a (5)
  同理假设 c ⃗ ⊥ b ⃗ \vec{c} \perp \vec{b} c b ,此时结果向量与 b ⃗ \vec{b} b 同向,可以得出结论
( a ⃗ × b ⃗ ) × c ⃗ = ( a ⃗ ⋅ c ⃗ ) ⋅ b ⃗ (6) (\vec{a} \times \vec{b}) \times \vec{c}=(\vec{a} \cdot \vec{c}) \cdot \vec{b}\tag{6} (a ×b )×c =(a c )b (6)

1 由简单情况到一般情况.

  对于任意三维空间向量 c ⃗ \vec{c} c 可以分解为垂直 a ⃗ , b ⃗ \vec{a},\vec{b} a ,b 所在平面的分量 c ⃗ a b \vec{c}_{ab} c ab,与 a ⃗ \vec{a} a 垂直的分量 c ⃗ a \vec{c}_{a} c a,与 b ⃗ \vec{b} b 垂直的分量 c ⃗ b \vec{c}_{b} c b
( a ⃗ × b ⃗ ) × c ⃗ = ( a ⃗ × b ⃗ ) × ( c ⃗ a + c ⃗ b + c ⃗ a b ) (7) (\vec{a} \times \vec{b}) \times \vec{c}=(\vec{a} \times \vec{b}) \times (\vec{c}_{a}+\vec{c}_{b}+\vec{c}_{ab})\tag{7} (a ×b )×c =(a ×b )×(c a+c b+c ab)(7)
  于是根据式(5)(6)以及垂直关系:
( a ⃗ × b ⃗ ) × c ⃗ = ( a ⃗ ⋅ c b ⃗ ) ⋅ b ⃗ − ( b ⃗ ⋅ c a ⃗ ) ⋅ a ⃗ = ( a ⃗ ⋅ c ⃗ ) ⋅ b ⃗ − ( b ⃗ ⋅ c ⃗ ) ⋅ a ⃗ (8) (\vec{a} \times \vec{b}) \times \vec{c}=(\vec{a} \cdot \vec{c_b}) \cdot \vec{b}-(\vec{b} \cdot \vec{c_a}) \cdot \vec{a}=(\vec{a} \cdot \vec{c}) \cdot \vec{b}-(\vec{b} \cdot \vec{c}) \cdot \vec{a}\tag{8} (a ×b )×c =(a cb )b (b ca )a =(a c )b (b c )a (8)

2 三个三维矢量连续叉乘的矩阵公式

2.1 叉乘的矩阵表示

  后文将不再涉及未知数,字母将直接表示矢量。对于一个矢量 w w w其叉乘任意矢量 v v v,等价于一个矩阵乘 v v v,该矩阵记为 w × w_{\times} w×,其值如下:
w × v = w × v = [ 0 − w z w y w z 0 − w x − w y w x 0 ] v (9) w \times v=w_{\times}v=\begin{bmatrix} 0 & -w_z & w_y \\ w_z & 0 & -w_x \\ -w_y & w_x & 0 \end{bmatrix}v\tag{9} w×v=w×v=0wzwywz0wxwywx0v(9)
  该矩阵的性质如下图,本文只针对连续叉乘的性质(下图性质(7)(8))进行证明,其余的性质比较简单:
在这里插入图片描述
  先看倒数第二条性质(8),根据式8:
( a × b ) × c = b a T c − a b T c = ( b a T − a b T ) c (10) (a \times b) \times c=ba^Tc-ab^Tc=(ba^T-ab^T)c\tag{10} (a×b)×c=baTcabTc=(baTabT)c(10)
  从而得:
( a × b ) × = b a T − a b T (11) (a\times b)_{\times}=ba^T-ab^T\tag{11} (a×b)×=baTabT(11)
  性质(9)很容易验证,那么结合性质(8)可以轻易推出性质(7)

智能网联汽车的安全员高级考试涉及多个方面的专业知识,包括但不限于自动驾驶技术原理、车辆传感器融合、网络安全防护以及法律法规等内容。以下是针对该主题的一些核心知识解析: ### 关于智能网联车安全员高级考试的核心内容 #### 1. 自动驾驶分级标准 国际自动机工程师学会(SAE International)定义了六个级别的自动驾驶等级,从L0到L5[^1]。其中,L3及以上级别需要安全员具备更高的应急处理能力。 #### 2. 车辆感知系统的组成与功能 智能网联车通常配备多种传感器,如激光雷达、毫米波雷达、摄像头和超声波传感器等。这些设备协同工作以实现环境感知、障碍物检测等功能[^2]。 #### 3. 数据通信与网络安全 智能网联车依赖V2X(Vehicle-to-Everything)技术进行数据交换,在此过程中需防范潜在的网络攻击风险,例如中间人攻击或恶意软件入侵[^3]。 #### 4. 法律法规要求 不同国家和地区对于无人驾驶测试及运营有着严格的规定,考生应熟悉当地交通法典中有关自动化驾驶部分的具体条款[^4]。 ```python # 示例代码:模拟简单决策逻辑 def decide_action(sensor_data): if sensor_data['obstacle'] and not sensor_data['emergency']: return 'slow_down' elif sensor_data['pedestrian_crossing']: return 'stop_and_yield' else: return 'continue_driving' example_input = {'obstacle': True, 'emergency': False, 'pedestrian_crossing': False} action = decide_action(example_input) print(f"Action to take: {action}") ``` 需要注意的是,“同学”作为特定平台上的学习资源名称,并不提供官方认证的标准答案集;建议通过正规渠道获取教材并参加培训课程来准备此类资格认证考试
评论 11
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值