Taylor Formula
泰勒公式,它的一般形式如下:
一般希望将复杂形式的函数用较为简单的方式来表示,另一种表述便是,用量上的复杂来解决质上的困难。
那为什么泰勒展开式是这种形式的?
上面说要用简单的形式表示复杂函数,那么如何选择表达式呢?类比切圆法,是不是可以用局部的线性近似来表示整体,假如有函数 y = x 3 y=x^3 y=x3,自变量的变化量为 Δ x Δx Δx,则:
Δ y = ( x + Δ x ) 3 − x 3 = 3 x 2 Δ x + 3 x ( Δ x 2 ) + ( Δ x 3 ) Δy=(x+Δx)^3 - x^3=3x^2Δx+3x(Δx^2)+(Δx^3) Δy=(x+Δx)3−x3=3x2Δx+3x(Δx2)+(Δx3)
假设在x的足够小的邻域内,即 Δ x Δx Δx–>0,按照局部近似的想法,舍去后两项即 Δ x Δx Δx的高阶无穷小项,
Δ y = 3 x 2 Δ x Δy=3x^2Δx Δy=3x2Δx
也就是说在自变量足够小的邻域内, Δ y Δy Δy是可以用 Δ x Δx Δx的线性函数来表示的,从复杂函数表示为线性函数,形式上就简单很多了,整理有:
Δ y = f ( x 0 + Δ x ) − f ( x 0 ) ≈ f ′ ( x 0 ) ∗ Δ x Δy=f(x_0+Δx)-f(x_0)≈f^′(x_0)*Δx Δy=f(x0+Δx)−f(x0)≈f′(x0)∗Δx, Δ x = x − x 0 Δx=x-x_0 Δx=x−x0
即
f ( x ) − f ( x 0 ) = f ′ ( x 0 ) ( x − x 0 ) f(x)-f(x_0)=f^′(x_0)(x-x_0) f(x)−f(x0)=f′(x0)(x−x0)
f ( x ) = f ( x 0 ) + f ′ ( x 0 ) ( x − x 0 ) f(x)=f(x_0)+f^′(x_0)(x-x_0) f(x)=f(x0)+f′(x0)(x−x0)
上面提到这是舍掉了高阶无穷小的局部近似,假如希望能得到更高的精度,直觉的就是进行多阶的求导。上述公式称为一阶泰勒展开式,那么多阶泰勒展开式如何表示?
将上式再整理, f ( x ) = f ( 0 ) ( x 0 ) ( x − x 0 ) ( 0 ) + f ( 1 ) ( x 0 ) ( x − x 0 ) ( 1 ) f(x)=f^{(0)}(x_0)(x-x_0)^{(0)}+f^{(1)}(x_0)(x-x_0)^{(1)} f(x)=f(0)(x0)(x−x0)(0)+f(1)(x0)(x−x0)(1),那么可以假设多阶泰勒展开式:
f ( x ) = f ( 0 ) ( x 0 ) ( x − x 0 ) ( 0 ) + f ( 1 ) ( x 0 ) ( x − x 0 ) ( 1 ) + f ( 2 ) ( x 0 ) ( x − x 0 ) ( 2 ) + . . . = f ( x ) = ∑ i = 0 m f ( i ) ( x 0 ) ( x − x 0 ) ( i ) f(x)=f^{(0)}(x_0)(x-x_0)^{(0)}+f^{(1)}(x_0)(x-x_0)^{(1)}+f^{(2)}(x_0)(x-x_0)^{(2)}+...=f(x)=\sum _{i=0} ^{m}f^{(i)}(x_0)(x-x_0)^{(i)} f(x)=f(0)(x0)(x−x0)(0)+f(1)(x0)(x−x0)(1)+f(2)(x0)(x−x0)(2)