Taylor Formula与Gradient Descent

Taylor Formula

泰勒公式,它的一般形式如下:
在这里插入图片描述
一般希望将复杂形式的函数用较为简单的方式来表示,另一种表述便是,用量上的复杂来解决质上的困难。
那为什么泰勒展开式是这种形式的?
上面说要用简单的形式表示复杂函数,那么如何选择表达式呢?类比切圆法,是不是可以用局部的线性近似来表示整体,假如有函数 y = x 3 y=x^3 y=x3,自变量的变化量为 Δ x Δx Δx,则:

Δ y = ( x + Δ x ) 3 − x 3 = 3 x 2 Δ x + 3 x ( Δ x 2 ) + ( Δ x 3 ) Δy=(x+Δx)^3 - x^3=3x^2Δx+3x(Δx^2)+(Δx^3) Δy=(x+Δx)3x3=3x2Δx+3x(Δx2)+(Δx3)

假设在x的足够小的邻域内,即 Δ x Δx Δx–>0,按照局部近似的想法,舍去后两项即 Δ x Δx Δx的高阶无穷小项,

Δ y = 3 x 2 Δ x Δy=3x^2Δx Δy=3x2Δx

也就是说在自变量足够小的邻域内, Δ y Δy Δy是可以用 Δ x Δx Δx的线性函数来表示的,从复杂函数表示为线性函数,形式上就简单很多了,整理有:

Δ y = f ( x 0 + Δ x ) − f ( x 0 ) ≈ f ′ ( x 0 ) ∗ Δ x Δy=f(x_0+Δx)-f(x_0)≈f^′(x_0)*Δx Δy=f(x0+Δx)f(x0)f(x0)Δx Δ x = x − x 0 Δx=x-x_0 Δx=xx0

f ( x ) − f ( x 0 ) = f ′ ( x 0 ) ( x − x 0 ) f(x)-f(x_0)=f^′(x_0)(x-x_0) f(x)f(x0)=f(x0)(xx0)
f ( x ) = f ( x 0 ) + f ′ ( x 0 ) ( x − x 0 ) f(x)=f(x_0)+f^′(x_0)(x-x_0) f(x)=f(x0)+f(x0)(xx0)

上面提到这是舍掉了高阶无穷小的局部近似,假如希望能得到更高的精度,直觉的就是进行多阶的求导。上述公式称为一阶泰勒展开式,那么多阶泰勒展开式如何表示?

将上式再整理, f ( x ) = f ( 0 ) ( x 0 ) ( x − x 0 ) ( 0 ) + f ( 1 ) ( x 0 ) ( x − x 0 ) ( 1 ) f(x)=f^{(0)}(x_0)(x-x_0)^{(0)}+f^{(1)}(x_0)(x-x_0)^{(1)} f(x)=f(0)(x0)(xx0)(0)+f(1)(x0)(xx0)(1),那么可以假设多阶泰勒展开式:

f ( x ) = f ( 0 ) ( x 0 ) ( x − x 0 ) ( 0 ) + f ( 1 ) ( x 0 ) ( x − x 0 ) ( 1 ) + f ( 2 ) ( x 0 ) ( x − x 0 ) ( 2 ) + . . . = f ( x ) = ∑ i = 0 m f ( i ) ( x 0 ) ( x − x 0 ) ( i ) f(x)=f^{(0)}(x_0)(x-x_0)^{(0)}+f^{(1)}(x_0)(x-x_0)^{(1)}+f^{(2)}(x_0)(x-x_0)^{(2)}+...=f(x)=\sum _{i=0} ^{m}f^{(i)}(x_0)(x-x_0)^{(i)} f(x)=f(0)(x0)(xx0)(0)+f(1)(x0)(xx0)(1)+f(2)(x0)(xx0)(2)

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值