Taylor Formula

T a y l o r   F o r m u l a : Taylor\ Formula: Taylor Formula:

  • 目的:我们试图用一个多项式去拟合一个复杂的函数,这样在处理问题上提供极大的便利

  • 提出问题:设 f ( x ) f(x) f(x) x 0 x_0 x0 具有 n n n 阶导数,试图找出一个关于 x − x 0 x-x_0 xx0 n n n 次多项式
    g ( x ) = a 0 + a 1 ( x − x 0 ) + a 2 ( x − x 0 ) 2 + ⋯ + a n ( x − x 0 ) n g(x)=a_0+a_1(x-x_0)+a_2(x-x_0)^2+\dots +a_n(x-x_0)^n g(x)=a0+a1(xx0)+a2(xx0)2++an(xx0)n
    要求 l i m x → x 0 f ( x ) − g ( x ) lim_{x\to x_0}f(x)-g(x) limxx0f(x)g(x) 是比 lim ⁡ x → x 0 ( x − x 0 ) n \lim_{x\to x_0}(x-x_0)^n limxx0(xx0)n 高阶的无穷小
    那么需要满足如下等式成立
    g ( x 0 ) = f ( x 0 ) g ′ ( x 0 ) = a 1 = f ′ ( x 0 ) g ( 2 ) ( x 0 ) = 2 ∗ a 2 = f ( n ) ( x 0 ) … g ( n ) ( x 0 ) = n ! ∗ a n = f ( n ) ( x 0 ) g(x_0)=f(x_0)\\ g'(x_0)=a_1=f'(x_0)\\g^{(2)}(x_0)=2*a_2=f^{(n)}(x_0)\\\dots \\ g^{(n)}(x_0)=n!*a_n=f^{(n)}(x_0) g(x0)=f(x0)g(x0)=a1=f(x0)g(2)(x0)=2a2=f(n)(x0)g(n)(x0)=n!an=f(n)(x0)
    于是我们得到
    f ( x ) = f ( x 0 ) + f ′ ( x 0 ) ( x − x 0 ) + f ( 2 ) ( x 0 ) 2 ( x − x 0 ) 2 + ⋯ + f ( n ) n ! ( x − x 0 ) n f(x)=f(x_0)+f'(x_0)(x-x_0)+\frac{f^{(2)}(x_0)}{2}(x-x_0)^2+\dots +\frac{f^{(n)}}{n!}(x-x_0)^n f(x)=f(x0)+f(x0)(xx0)+2f(2)(x0)(xx0)2++n!f(n)(xx0)n

  • 泰勒中值定理1
    如果函数 f ( x ) f(x) f(x) x 0 x_0 x0 处有 n n n 阶导数,那么存在 x 0 x_0 x0 的一个邻域,使得邻域任意一个 x x x 满足
    f ( x ) = f ( x 0 ) + f ′ ( x 0 ) ( x − x 0 ) + f ( 2 ) ( x 0 ) 2 ( x − x 0 ) 2 + ⋯ + f ( n ) n ! ( x − x 0 ) n + R n ( x ) f(x)=f(x_0)+f'(x_0)(x-x_0)+\frac{f^{(2)}(x_0)}{2}(x-x_0)^2+\dots +\frac{f^{(n)}}{n!}(x-x_0)^n+R_n(x) f(x)=f(x0)+f(x0)(xx0)+2f(2)(x0)(xx0)2++n!f(n)(xx0)n+Rn(x)
    其中 R n ( x ) = o ( ( x − x 0 ) n ) R_n(x)=o((x-x_0)^n) Rn(x)=o((xx0)n) (高阶无穷小)
    R n ( x ) = f ( x ) − g ( x ) R_n(x)=f(x)-g(x) Rn(x)=f(x)g(x),则
    R n ( x 0 ) = R n ′ ( x 0 ) = ⋯ = R n ( n ) ( x 0 ) = 0 R_n(x_0)=R_n'(x_0)=\dots =R_n^{(n)}(x_0)=0 Rn(x0)=Rn(x0)==Rn(n)(x0)=0
    要证原命题,我们只需要证明:
    lim ⁡ x → x 0 R n ( x ) ( x − x 0 ) n = 0 \lim_{x\to x_0}\frac{R_n(x)}{(x-x_0)^n}=0 xx0lim(xx0)nRn(x)=0
    我们用洛必达法则求这个极限就可以证明

  • 泰勒中值定理2
    若函数 f ( x ) f(x) f(x) x 0 x_0 x0 的某个邻域 U ( x 0 ) U(x_0) U(x0) n + 1 n+1 n+1 阶导数,那么任意 x 0 ∈ U ( x 0 ) x_0\in U(x_0) x0U(x0),有
    f ( x ) = f ( x 0 ) + f ′ ( x 0 ) ( x − x 0 ) + f ( 2 ) ( x 0 ) 2 ( x − x 0 ) 2 + ⋯ + f ( n ) n ! ( x − x 0 ) n + R n ( x ) f(x)=f(x_0)+f'(x_0)(x-x_0)+\frac{f^{(2)}(x_0)}{2}(x-x_0)^2+\dots +\frac{f^{(n)}}{n!}(x-x_0)^n+R_n(x) f(x)=f(x0)+f(x0)(xx0)+2f(2)(x0)(xx0)2++n!f(n)(xx0)n+Rn(x)
    其中
    R n ( x ) = f ( n + 1 ) ( ξ ) ( n + 1 ) ! ( x − x 0 ) n + 1 ( ξ  在  x 0 , x 中间) R_n(x)=\frac{f^{(n+1)}(\xi)}{(n+1)!}(x-x_0)^{n+1}(\text{$\xi$ 在 $x_0$,$x$中间)} Rn(x)=(n+1)!f(n+1)(ξ)(xx0)n+1(ξ  x0,x中间)
    证明:记 R n ( x ) = f ( x ) − g ( x ) R_n(x)=f(x)-g(x) Rn(x)=f(x)g(x),用 “柯西中值定理” 可以得到
    R n ( x ) ( x − x 0 ) n + 1 = R n ( x ) − R n ( x 0 ) ( x − x 0 ) n + 1 − 0 = R n ′ ( ξ 1 ) ( n + 1 ) ( x − x 0 ) n ( ξ 1  在  x 0 , x 中间) \frac{R_n(x)}{(x-x_0)^{n+1}}=\frac{R_n(x)-R_n(x_0)}{(x-x_0)^{n+1}-0}=\frac{R'_n(\xi_1)}{(n+1)(x-x_0)^n}(\text{$\xi_1$ 在 $x_0$,$x$中间)} (xx0)n+1Rn(x)=(xx0)n+10Rn(x)Rn(x0)=(n+1)(xx0)nRn(ξ1)(ξ1  x0,x中间)
    继续迭代,妙不可言
    R n ′ ( ξ 1 ) ( n + 1 ) ( x − x 0 ) n = R n ′ ( ξ 1 ) − R n ( x 0 ) ( n + 1 ) ( ξ 1 − x 0 ) n − 0 = R n ′ ′ ( ξ 2 ) ( n + 1 ) n ( x − x 0 ) n − 1 ( ξ 2  在  x 0 , x 中间) \frac{R'_n(\xi_1)}{(n+1)(x-x_0)^n}=\frac{R_n'(\xi_1)-R_n(x_0)}{(n+1)(\xi_1-x_0)^{n}-0}=\frac{R''_n(\xi_2)}{(n+1)n(x-x_0)^{n-1}}(\text{$\xi_2$ 在 $x_0$,$x$中间)} (n+1)(xx0)nRn(ξ1)=(n+1)(ξ1x0)n0Rn(ξ1)Rn(x0)=(n+1)n(xx0)n1Rn(ξ2)(ξ2  x0,x中间)
    到最后就会有
    R n ( x ) ( x − x 0 ) n + 1 = R ( n + 1 ) ( ξ ) ( n + 1 ) ! ( ξ  在  x 0 , x 中间) \frac{R_n(x)}{(x-x_0)^{n+1}}=\frac{R^{(n+1)}(\xi)}{(n+1)!}(\text{$\xi$ 在 $x_0$,$x$中间)} (xx0)n+1Rn(x)=(n+1)!R(n+1)(ξ)(ξ  x0,x中间)
    R n ( n + 1 ) ( x ) = f ( n + 1 ) ( x ) R_n^{(n+1)}(x)=f^{(n+1)}(x) Rn(n+1)(x)=f(n+1)(x) 于是得证

  • 有了这个,我们就可以误差分析了
    设当 x ∈ U ( x 0 ) x\in U(x_0) xU(x0) 时, ∣ f ( n + 1 ) ( x ) ≤ M ∣ |f^{(n+1)}(x)\le M| f(n+1)(x)M,那么误差
    ∣ R n ( x ) ∣ = ∣ f ( n + 1 ) ( ξ ) ( n + 1 ) ! ( x − x 0 ) n + 1 ∣ ≤ M ( x − x 0 ) n + 1 ( n + 1 ) ! |R_n(x)|=|\frac{f^{(n+1)}(\xi)}{(n+1)!}(x-x_0)^{n+1}|\le \frac{M(x-x_0)^{n+1}}{(n+1)!} Rn(x)=(n+1)!f(n+1)(ξ)(xx0)n+1(n+1)!M(xx0)n+1
    如:用 e x = 1 + x + x 2 2 + ⋯ + x n n ! e^x=1+x+\frac{x^2}{2}+\dots+\frac{x^n}{n!} ex=1+x+2x2++n!xn e e e
    误差为 ∣ R n ∣ ≤ e ( n + 1 ) ! |R_n|\le \frac{e}{(n+1)!} Rn(n+1)!e,当 n ≤ 10 n\le 10 n10 时可以做到 1 0 − 6 10^{-6} 106 级别

  • 2
    点赞
  • 1
    收藏
    觉得还不错? 一键收藏
  • 打赏
    打赏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

FSYo

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值