集合论(ZFC)之 划分图式公理(Axiom Schema of Separation)注解

        集合论(ZFC)之 划分图式公理(Axiom Schema of Separation)的作用在于,可以基于该公理来定义出,交集(Intersection, ∩)、差集(Difference, - ),以及空集(Empty Set, ∅),等。

        定义如下:

        ∀X∀p₁...∀pₙ ∃Y ∀u (u ∈ Y ↔ u ∈ X ∧ ψ(u, p₁, ..., pₙ)) 

        即,集合Y 的元素,来自于集合X中,满足表达式 ψ(u, p₁, ..., pₙ),的元素。也就是,通过对表达式ψ(u, p₁, ..., pₙ) 满足与否,来划分集合X中的元素,其中满足的元素组成集合Y。

        其中,ψ 表示一个表达式(Formular),u, p₁, ..., pₙ 为 ψ 中可使用的变量。∀X∀p₁...∀pₙ 为给定的条件,也就是当 集合X 与p₁, ..., pₙ变量所指向的对象是给定的,那么集合Y的元素,由集合X中,满足 ψ(u, p₁, ..., pₙ) 的元素,给出。

        因此,有

Y = {u ∈ X: ψ(u, (p₁, ..., pₙ))}

        那么,可以定义

交集(Intersection,∩),即

X ∩ Y = {u ∈ X : u ∈ Y }

        也就是,集合X中的元素,要满足同时是集合Y的元素,即 

u ∈ X ∧ ψ(u, p₁, ..., pₙ) = u ∈ X ∧ u ∈ Y (其中,ψ(u, p₁, ..., pₙ) = ψ(u, Y) = u ∈ Y)

差集(Difference,- ),即

X - Y = {u ∈ X : u !∈ Y }

        也就是,集合X中的元素,要满足同时不是集合Y的元素,即 

u ∈ X ∧ ψ(u, p₁, ..., pₙ) = u ∈ X ∧ u !∈ Y (其中,ψ(u, p₁, ..., pₙ) = ψ(u, Y) = u !∈ Y)

空集(Empty Set,∅),即

∅ = {u: u != u}

        这里注意的是,元素u并没有指定属于哪个集合,因此,可以看作为对于任意集合,u是其满足不等于自身的元素。但定义上,任何对象都等于其自身,因此空集∅并不含有任何元素。同时,根据子集关系(Subset)的定义,空集∅可作为任意集合的子集。

从而,定义不相交集(Disjoint)关系,即

X ∩ Y = ∅

        另外,划分图式公理还有一个重要作用,就是避免了罗素悖论(Russel's Paradox),即 A set containing sets that do not contain itself。

        先定义一个集合宇宙(The universe of sets),记为 V,包含所有的集合,即

V = {x: x = x}

        也就是说,集合宇宙 V 包含了所有自身相等的集合。因自身相等是外延性公理的要求,所以集合宇宙V包含了所有的集合。但是该集合宇宙 V 本身不是集合。

        因为,如果 V 是集合,那么,ZFC中,就能表达,存在一个集合 S,其元素是所有集合中不包含自身的集合,即罗素悖论描述的集合,记:

S = { x ∈ V : x !∈ x }

        所以,集合宇宙V不能是集合。此处借用了类型理论的类型宇宙的概念。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

KeithTsui

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值