《线性代数及其应用》阅读笔记:第二章 矩阵代数

《线性代数及其应用》阅读笔记:第二章 矩阵代数

矩阵代数
1- 矩阵运算
2- 矩阵的逆
3- 圆角长方形
4- 圆角长方形

一、矩阵运算

1.1. 矩阵乘法

对于矩阵的乘法,可以从不同角度加以理解。

  • 角度1:矩阵的行列法则

矩阵 A m ∗ n A_{m*n} Amn×矩阵 B n ∗ k → B_{n*k} \to Bnk 新矩阵 ( A B ) m ∗ k (AB)_{m*k} (AB)mk
其中, ( A B ) i j = a i 1 ∗ b 1 j + a i 2 ∗ b 2 j + . . . a i n ∗ b n j (AB)_{ij}=a_{i1}*b_{1j}+a_{i2}*b_{2j}+...a_{in}*b_{nj} (AB)ij=ai1b1j+ai2b2j+...ainbnj

在这里插入图片描述

  • 角度2:线性空间/线性变换的角度

矩阵是线性空间中的线性变换

  • 矩阵运算构成环。
  • 矩阵运算是封闭的!
  • ( A B ) = A [ b ⃗ 1 , b ⃗ 2 , . . . , b ⃗ n ] = [ A b ⃗ 1 , A b ⃗ 2 , . . . , A b ⃗ n ] (AB)=A[\vec b_1 , \vec b_2, ... ,\vec b_n]=[A\vec b_1 , A\vec b_2, ... ,A\vec b_n] (AB)=A[b 1,b 2,...,b n]=[Ab 1,Ab 2,...,Ab n],其中, B = [ b ⃗ 1 , b ⃗ 2 , . . . , b ⃗ n ] B=[\vec b_1 , \vec b_2, ... ,\vec b_n] B=[b 1,b 2,...,b n]
    AB的每一列都是A的各列的线性组合,以B的对应列的元素为权值。
  • 矩阵乘法的性质:
-矩阵乘法的性质:
满足:1. 结合律: ( A B ) C = A ( B C ) (AB)C=A(BC) (AB)C=A(BC)
2. 数乘运算: A m ∗ n = k ∗ B m ∗ n , 则 A i j = k ∗ B i j A_{m*n}=k*B_{m*n},则A_{ij}=k*B_{ij} Amn=kBmnAij=kBij
3. 分配律
不满足:1. 矩阵不可消去!
2. 矩阵不可交换! B A ≠ A B BA≠AB BA=AB

1.2. 矩阵的转置

转置-T M i ∗ j T = M j ∗ i M_{i*j}^T=M_{j*i} MijT=Mji

  • 转置的性质:
    ( A B ) T = B T A T (AB)^T=B^TA^T (AB)T=BTAT

二、矩阵的逆

矩阵有逆 → \to 一定是方阵。

可逆的定义:
方阵 A A A,存在可逆矩阵 C n ∗ n C_{n*n} Cnn,满足 C A = I , A C = I CA=I,AC=I CA=I,AC=I,则A是可逆矩阵。

  • 可逆矩阵 → \to 非奇异矩阵
  • 不可逆矩阵 → \to 奇异矩阵
  • 可逆矩阵的判断方法:
-可逆矩阵的判断方法
1. d e t ( A ) ≠ 0 det(A)≠0 det(A)=0
2.A行等价于 I n I_n In
  • 逆矩阵的求法:
    对增广矩阵 [ A I ] [A I] [AI]行化简,得到 [ I A − 1 ] [I A^{-1}] [IA1]

  • 可逆矩阵的性质:

-可逆矩阵的性质:
1.若A是可逆矩阵,则 A − 1 A^{-1} A1也可逆,且 ( A − 1 ) − 1 = A (A^{-1})^{-1}=A (A1)1=A
2. ( A B ) − 1 = B − 1 A − 1 (AB)^{-1}=B^{-1}A^{-1} (AB)1=B1A1
  • 可逆线性变换:

线性变换T: R n → R n R^n\to R^n RnRn称为可逆的,若存在函数S: R n → R n R^n\to R^n RnRn使得:

  • S ( T ( x ⃗ ) ) = x ⃗ S(T(\vec x))=\vec x S(T(x ))=x
  • T ( S ( x ⃗ ) ) = x ⃗ T(S(\vec x))=\vec x T(S(x ))=x
  • 可逆矩阵定理:
    若A为n*n的方阵,则以下命题等价。
-可逆矩阵定理
1. A A A是可逆矩阵。
2. A A A行等价于 I n I_n In
3. A A A有n个主元位置。
4.方程 A x ⃗ = 0 ⃗ A\vec x=\vec 0 Ax =0 仅有平凡解。
5. A A A的各列线性无关。
6.线性变换 A → A x ⃗ A \to A \vec x AAx 是一对一的。
7.方程 A x ⃗ = b ⃗ A\vec x=\vec b Ax =b 至少有一个解。
8. A A A的各列生成 R n R^n Rn
9.线性变换 A → A x ⃗ A \to A \vec x AAx R n R^n Rn映射到 R n R^n Rn
10.存在 C n ∗ n , C A = I C_{n*n},CA=I CnnCA=I
11.存在 C n ∗ n , A C = I C_{n*n},AC=I CnnAC=I
12. A T A^T AT是可逆矩阵。

三、分块矩阵

  • 分块矩阵的乘法:

A B = [ c o l 1 ( A ) c o l 2 ( A ) . . . c o l n ( A ) ] ∗ [ c o l 1 ( B ) c o l 2 ( B ) . . . c o l n ( B ) ] T AB=[col_1(A) col_2(A) ... col_n(A)]*[col_1(B) col_2(B) ... col_n(B)]^T AB=[col1(A)col2(A)...coln(A)][col1(B)col2(B)...coln(B)]T
其中,矩阵A的列与矩阵B的行分法一致。

  • 分块矩阵的逆:
    对角分块矩阵可逆 → \to 当且仅当主对角元素各分块都可逆。

四、矩阵因式分解

详见:矩阵的三角分解

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值