线性代数及其应用:第一章 矩阵与高斯消去法

本文深入探讨线性代数的基础——矩阵与高斯消去法,解析线性方程组的解法。内容涵盖矩阵的基本运算、高斯消去法的原理及应用,以及矩阵的三角分解和逆矩阵的概念。通过实例解析矩阵乘法的意义和性质,展示如何利用高斯消去法进行方程求解,并引出矩阵的三角分解和矩阵逆的计算方法。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >


前言:这篇blog是《 Linear Algebra and Its Applications》第一章的一些学习笔记

第一章 矩阵与高斯消去法

  核心问题:解线性方程组
  基本方法:高斯消去法(第一、二章的根本,很简单,但确实可以解决线性代数中的很多问题)
  重点:矩阵的三角分解 P A = L D U PA = LDU PA=LDU,对称矩阵的三角分解 A = L D L T A=LDL^{T} A=LDLT

1. 线性方程组

  对线性方程组
{ 1 x + 2 y = 3 4 x + 5 y = 6 \begin{cases} 1x+2y=3 & \\ 4x+5y=6 & \end{cases} { 1x+2y=34x+5y=6
  表示成矩阵乘法形式如下:
A X = [ 1 2 4 5 ] [ x y ] = [ 3 6 ] AX= \left[ \begin{matrix} 1 & 2\\ 4 & 5 \end{matrix} \right]\left[ \begin{matrix} x\\ y \end{matrix} \right]=\left[ \begin{matrix} 3\\ 6 \end{matrix} \right] AX=[1425][xy]=[36]

  进一步定义
  非奇异情况(Nonsingular):有唯一解;
  奇异情况(Singular):有无数解或无解;
  这里我们可以看出,线性方程组的解只有三种情况,有唯一解,有无数解,无解。没有两个解或三个解的情况,下面证明 A X = B AX=B AX=B如果有两个解 X 1 , X 2 X_{1},X_{2} X1,X2,即一定有无穷多个解。

证明:
A X = B AX=B AX=B有两个解 X 1 , X 2 X_{1},X_{2} X1,X2 X 1 ≠ X 2 X_{1} \neq X_{2} X1̸=X2
A X 1 = B AX_{1}=B AX1=B A X 2 = B AX_{2}=B AX2=B
构造 X = λ X 1 + ( 1 − λ ) X 2 , ( 0 &lt; λ &lt; 1 ) X=\lambda X_{1}+(1-\lambda)X_{2},(0&lt;\lambda&lt;1) X=λX1+(1λ)X2,(0<λ<1)
A X = λ A X 1 + ( 1 − λ ) A X 2 = λ B + ( 1 − λ ) B = B AX=\lambda AX_{1}+(1-\lambda)AX_{2}=\lambda B+(1-\lambda)B=B AX=λAX1+(1λ)AX2=λB+(1λ)B=B,所以 X = λ X 1 + ( 1 − λ ) X 2 , ( 0 &lt; λ &lt; 1 ) X=\lambda X_{1}+(1-\lambda)X_{2},(0&lt;\lambda&lt;1) X=λX1+(1λ)X2,(0<λ<1)也是 A X = B AX=B AX=B的解,证毕。


2. 矩阵符号与矩阵加法,数乘,乘法

  这是基本知识,简单罗列一下。矩阵,就是一堆数的集合,表示成如下形式
A 2 × 3 = [ 2 1 3 0 0 4 ] , B 2 × 3 = [ 1 2 − 3 1 1 2 ] A_{2\times3}= \left[ \begin{matrix} 2 &amp; 1\\ 3 &amp; 0\\ 0&amp; 4 \end{matrix} \right],B_{2\times3}= \left[ \begin{matrix} 1 &amp; 2\\ -3 &amp; 1\\ 1&amp; 2 \end{matrix} \right] A2×3=230104B2×3=131212

  矩阵加法定义:
A + B = [ 2 1 3 0 0 4 ] + [ 1 2 − 3 1 1 2 ] = [ 3 3 0 1 1 6 ] A+B= \left[ \begin{matrix} 2 &amp; 1\\ 3 &amp; 0\\ 0&amp; 4 \end{matrix} \right]+\left[ \begin{matrix} 1 &amp; 2\\ -3 &amp; 1\\ 1&amp; 2 \end{matrix} \right]=\left[ \begin{matrix} 3 &amp; 3\\ 0 &amp; 1\\ 1&amp; 6 \end{matrix} \right] A+B=230104+131212=301316

  矩阵数乘定义:
2 A = 2 × [ 2 1 3 0 0 4 ] = [ 4 2 6 0 0 8 ] 2A= 2\times\left[ \begin{matrix} 2 &amp; 1\\ 3 &amp; 0\\ 0&amp; 4 \end{matrix} \right]=\left[ \begin{matrix} 4 &amp; 2\\ 6 &amp; 0\\ 0&amp; 8 \end{matrix} \right] 2A=2×230104=460208

  矩阵乘法定义:要求A的列数必须等于B的行数, A × B = C A\times B=C A×B=C,则 C i j = A C_{ij}=A Cij=A的第 i i i行行向量 × B \times B ×B的第 j j j列列向量,像上面定义的矩阵A,B就无法做乘法。

2.1. 矩阵乘法的意义

  下面简单讨论一下矩阵乘法的意义,重点解释一下矩阵的乘法,其实乘法的操作来的一点也不突兀。考虑两个系统A,B,系统A的作用是把输入向量 X = [ x 1 , x 2 ] T X=[x_{1},x_{2}]^{T} X=[x1,x2]T的元素做线性组合, y 1 = a 11 x 1 + a 12 x 2 , y 2 = a 21 x 1 + a 22 x 2 y_{1}=a_{11}x_{1}+a_{12}x_{2},y_{2}=a_{21}x_{1}+a_{22}x_{2} y1=a11x1+a12x2y2=a21x1+a22x2,A用矩阵表示为, A = [ a 11 a 12 a 21 a 22 ] A=\left[ \begin{matrix} a_{11} &amp; a_{12}\\ a_{21} &amp; a_{22} \end{matrix} \right] A=[a11a21a12a22]输出向量 Y = A X Y=AX Y=AX Y = [ y 1 , y 2 ] T Y=[y_{1},y_{2}]^{T} Y=[y1,y2]T;系统B的作用是把输入向量 Y = [ y 1 , y 2 ] T Y=[y_{1},y_{2}]^{T} Y=[y1,y2]T的元素做线性组合, c 1 = b 11 y 1 + b 12 y 2 , c 2 = b 21 y 1 + b 22 y 2 c_{1}=b_{11}y_{1}+b_{12}y_{2},c_{2}=b_{21}y_{1}+b_{22}y_{2} c1=b11y1+b12y2c2=b21y1+b22y2,B用矩阵表示为, B = [ b 11 b 12 b 21 b 22 ] B=\left[ \begin{matrix} b_{11} &amp; b_{12}\\ b_{21} &amp; b_{22} \end{matrix} \right] B=[b11b21

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值