part B:集成模式:4. 两种并行集成的树模型
一、练习题
1. 练习题1
解答:均方误差RMSE是预测值与真实值得误差平方根的均值。r2_score方法是将预测值和只使用均值的情况下相比,看能好多少。
当量纲不同时,r2_score更容易衡量模型的效果好坏。
2. 练习题2
解答: 没有影响,因为只是对应位置上的值相减,和位置的顺序没有关系。
二、知识回顾
4. 什么是随机森林的oob得分?
解答:
随机森林由于每一个基学习器使用了重复抽样得到的数据集进行训练,因此总存在比例大约为的数据集没有参与训练,我们把这一部分数据称为out-of-bag样本,简称oob样本。此时,对每一个基学习器训练完毕后,我们都对oob样本进行预测,每个样本对应的oob_prediction_值为所有没有采样到该样本进行训练的基学习器预测结果均值。在得到所有样本的oob_prediction_后,对于回归问题,使用r2_score来计算对应的oob_score_,而对于分类问题,直接使用accuracy_score来计算oob_score_。
5. 随机森林是如何集成多个决策树模型的?
解答:
当处理回归问题时,输出值为各学习器的均值;当处理分类问题时有两种策略,第一种是原始论文中使用的投票策略,即每个学习器输出一个类别,返回最高预测频率的类别,第二种是sklearn中采用的概率聚合策略,即通过各个学习器输出的概率分布先计算样本属于某个类别的平均概率,在对平均的概率分布取argmax以输出最可能的类别。
6. 请叙述孤立森林的算法原理和流程
解答:
多次随机选取特征和对应的分割点以分开空间中样本点,那么异常点很容易在较早的几次分割中就已经与其他样本隔开,正常点由于较为紧密故需要更多的分割次数才能将其分开。
对于n个样本而言,我们可以构建一棵在每个分支进行特征大小判断的树来将样本分派到对应的叶子节点,为了定量刻画异常情况,在这篇文献中证明了树中的平均路径(即树的根节点到叶子结点经过的节点数)长度c为
此时对于某个样本x,假设其分派到叶子节点的路径长度为h(x),我们就能用h(x)/c(n)的大小来度量异常的程度,该值越小则越有可能为异常点。由于单棵树上使用的是随机特征的随机分割点,稳健度较差,因此孤立森林将建立t棵树,每棵树上都在数据集上抽样出ψ个样本进行训练。为了总和集成的结果,我们定义指标
指数上 表示样本x在各树的路径平均值。我们可以规定树的生长停止当且仅当树的高度(路径的最大值)达到了给定的限定高度,或者叶子结点样本数仅为1,或者叶子节点样本数的所有特征值完全一致(即空间中的点重合,无法分离)。那么如何决定树的限定高度呢? 由于c(n)c与logn数量级相同,故给定的限定高度可以设置为logn。
三、代码实现
1. 分类的随机森林算法
import numpy as np
from sklearn.tree import DecisionTreeClassifier as ClassificationTree
from sklearn import datasets
from sklearn.model_selection import train_test_split
class RandomForest():
"""Random Forest classifier. Uses a collection of classification trees that
trains on random subsets of the data using a random subsets of the features.
Parameters:
-----------
n_estimators: int
树的数量
The number of classification trees that are used.
max_features: int
每棵树选用数据集中的最大的特征数
The maximum number of features that the classification trees are allowed to
use.
min_samples_split: int
每棵树中最小的分割数,比如 min_samples_split = 2表示树切到还剩下两个数据集时就停止
The minimum number of samples needed to make a split when building a tree.
min_gain: float
每棵树切到小于min_gain后停止
The minimum impurity required to split the tree further.
max_depth: int
每棵树的最大层数
The maximum depth of a tree.
"""
def __init__(self, n_estimators=100, min_samples_split=2, min_gain=0,
max_depth=7, max_features=None):
self.n_estimators = n_estimators #树的数量
self.min_samples_split = min_samples_split #每棵树中最小的分割数,比如 min_samples_split = 2表示树切到还剩下两个数据集时就停止
self.min_gain = min_gain #每棵树切到小于min_gain后停止
self.max_depth = max_depth #每棵树的最大层数
self.max_features = max_features #每棵树选用数据集中的最大的特征数
self.trees = []
# 建立森林(bulid forest)
for _ in range(self.n_estimators):
tree = ClassificationTree(min_samples_split=self.min_samples_split, min_impurity_decrease=self.min_gain,
max_depth=self.max_depth)
self.trees.append(tree)
def fit(self, X, Y):
# 训练,每棵树使用随机的数据集(bootstrap)和随机的特征
# every tree use random data set(bootstrap) and random feature
sub_sets = self.get_bootstrap_data(X, Y)
n_features = X.shape[1]
if self.max_features == None:
self.max_features = int(np.sqrt(n_features))
for i in range(self.n_estimators):
# 生成随机的特征
# get random feature
sub_X, sub_Y = sub_sets[i]
idx = np.random.choice(n_features, self.max_features, replace=True)
sub_X = sub_X[:, idx]
self.trees[i].fit(sub_X, sub_Y)
self.trees[i].feature_indices= idx
print("tree", i, "fit complete")
def predict(self, X):
y_preds = []
for i in range(self.n_estimators):
idx = self.trees[i].feature_indices
sub_X = X[:, idx]
y_pre = self.trees[i].predict(sub_X)
y_preds.append(y_pre)
y_preds = np.array(y_preds).T
y_pred = []
for y_p in y_preds:
# np.bincount()可以统计每个索引出现的次数
# np.argmax()可以返回数组中最大值的索引
# cheak np.bincount() and np.argmax() in numpy Docs
y_pred.append(np.bincount(y_p.astype('int')).argmax())
return y_pred
def get_bootstrap_data(self, X, Y):
# 通过bootstrap的方式获得n_estimators组数据
# get int(n_estimators) datas by bootstrap
m = X.shape[0] #行数
Y = Y.reshape(m, 1)
# 合并X和Y,方便bootstrap (conbine X and Y)
X_Y = np.hstack((X, Y)) #np.vstack():在竖直方向上堆叠/np.hstack():在水平方向上平铺
np.random.shuffle(X_Y) #随机打乱
data_sets = []
for _ in range(self.n_estimators):
idm = np.random.choice(m, m, replace=True) #在range(m)中,有重复的选取 m个数字
bootstrap_X_Y = X_Y[idm, :]
bootstrap_X = bootstrap_X_Y[:, :-1]
bootstrap_Y = bootstrap_X_Y[:, -1:]
data_sets.append([bootstrap_X, bootstrap_Y])
return data_sets
if __name__ == '__main__':
data = datasets.load_digits()
X = data.data
y = data.target
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.4, random_state=2)
print("X_train.shape:", X_train.shape)
print("Y_train.shape:", y_train.shape)
clf = RandomForest(n_estimators=100)
clf.fit(X_train, y_train)
y_pred = clf.predict(X_test)
2. 孤立森林算法
直接贴老师给的代码
from pyod.utils.data import generate_data
import matplotlib.pyplot as plt
import numpy as np
class Node:
def __init__(self, depth):
self.depth = depth
self.left = None
self.right = None
self.feature = None
self.pivot = None
class Tree:
def __init__(self, max_height):
self.root = Node(0)
self.max_height = max_height
self.c = None
def _build(self, node, X,):
if X.shape[0] == 1:
return
if node.depth+1 > self.max_height:
node.depth += self._c(X.shape[0])
return
node.feature = np.random.randint(X.shape[1])
pivot_min = X[:, node.feature].min()
pivot_max = X[:, node.feature].max()
node.pivot = np.random.uniform(pivot_min, pivot_max)
node.left, node.right = Node(node.depth+1), Node(node.depth+1)
self._build(node.left, X[X[:, node.feature]<node.pivot])
self._build(node.right, X[X[:, node.feature]>=node.pivot])
def build(self, X):
self.c = self._c(X.shape[0])
self._build(self.root, X)
def _c(self, n):
if n == 1:
return 0
else:
return 2 * ((np.log(n-1) + 0.5772) - (n-1)/n)
def _get_h_score(self, node, x):
if node.left is None and node.right is None:
return node.depth
if x[node.feature] < node.pivot:
return self._get_h_score(node.left, x)
else:
return self._get_h_score(node.right, x)
def get_h_score(self, x):
return self._get_h_score(self.root, x)
class IsolationForest:
def __init__(self, n_estimators=100, max_samples=256):
self.n_estimator = n_estimators
self.max_samples = max_samples
self.trees = []
def fit(self, X):
for tree_id in range(self.n_estimator):
random_X = X[np.random.randint(0, X.shape[0], self.max_samples)]
tree = Tree(np.log(random_X.shape[0]))
tree.build(X)
self.trees.append(tree)
def predict(self, X):
result = []
for x in X:
h = 0
for tree in self.trees:
h += tree.get_h_score(x) / tree.c
score = np.power(2, - h/len(self.trees))
result.append(score)
return np.array(result)
if __name__ == "__main__":
np.random.seed(0)
# 1%异常点
X_train, X_test, y_train, y_test = generate_data(
n_train=1000, n_test=500,
contamination=0.05, behaviour="new", random_state=0
)
IF = IsolationForest()
IF.fit(X_train)
res = IF.predict(X_test)
abnormal_X = X_test[res > np.quantile(res, 0.95)]
plt.scatter(X_test[:, 0], X_test[:, 1], s=5)
plt.scatter(
abnormal_X[:, 0], abnormal_X[:, 1],
s=30, edgecolors="Red", facecolor="none"
)
plt.show()