卡尔曼滤波之线性代数复习

在使用卡尔曼滤波处理传感器数据时,首先需要定义系统的状态和状态转移模型,以及测量模型。这些模型通常表示为矩阵和向量的形式。我将提供一个简单的示例,假设我们要估计一个运动系统的位置,传感器测量的是位置信息。

1. 系统状态:
假设我们要估计的系统状态是位置 x x x和速度 v v v,那么系统状态向量可以表示为:
x = [ x v ] \mathbf{x} = \begin{bmatrix} x \\ v \end{bmatrix} x=[xv]

2. 状态转移模型:
假设系统是匀速运动,状态转移模型可以表示为:
x k = [ 1 Δ t 0 1 ] x k − 1 + w k \mathbf{x}_k = \begin{bmatrix} 1 & \Delta t \\ 0 & 1 \end{bmatrix} \mathbf{x}_{k-1} + \mathbf{w}_k xk=[10Δt1]xk1+wk

其中 x k \mathbf{x}_k xk x k − 1 \mathbf{x}_{k-1} xk1 是列向量, Δ t \Delta t Δt 是一个常数, w k \mathbf{w}_k wk 是过程噪声向量。

将矩阵乘法展开,可以将上述公式写成两个方程:

x 1 k = x 1 k − 1 + Δ t ⋅ x 2 k − 1 + w 1 k x_{1k} = x_{1k-1} + \Delta t \cdot x_{2k-1} + w_{1k} x1k=x1k1+Δtx2k1+w1k

x 2 k = x 2 k − 1 + w 2 k x_{2k} = x_{2k-1} + w_{2k} x2k=x2k1+w2k

这两个方程分别描述了状态向量 x k \mathbf{x}_k xk 中的两个分量的更新。第一个分量 x 1 k x_{1k} x1k 依赖于前一时刻的 x 1 k − 1 x_{1k-1} x1k1 x 2 k − 1 x_{2k-1} x2k1,第二个分量 x 2 k x_{2k} x2k 依赖于前一时刻的 x 2 k − 1 x_{2k-1} x2k1。同时,每个分量都受到了噪声的影响。

3. 测量模型:
传感器测量得到的数据是位置,测量模型可以表示为:
z k = [ 1 0 ] x k + v k \mathbf{z}_k = \begin{bmatrix} 1 & 0 \end{bmatrix} \mathbf{x}_k + \mathbf{v}_k zk=[10]xk+vk
具体展开为方程组:

z k , 1 = 1 ⋅ x k , 1 + 0 ⋅ x k , 2 + v k , 1 z_{k,1} = 1 \cdot x_{k,1} + 0 \cdot x_{k,2} + v_{k,1} zk,1=1xk,1+0xk,2+vk,1

z k , 2 = 1 ⋅ x k , 1 + 0 ⋅ x k , 2 + v k , 2 z_{k,2} = 1 \cdot x_{k,1} + 0 \cdot x_{k,2} + v_{k,2} zk,2=1xk,1+0xk,2+vk,2

其中, v k \mathbf{v}_k vk 是测量噪声。

4. 卡尔曼滤波的步骤:

  • 预测(预测系统状态):
    x ^ k − = A k x ^ k − 1 + B k u k \hat{\mathbf{x}}_k^- = \mathbf{A}_k \hat{\mathbf{x}}_{k-1} + \mathbf{B}_k \mathbf{u}_k x^k=Akx^k1+Bkuk
    P k − = A k P k − 1 A k T + Q k P_k^- = \mathbf{A}_k P_{k-1} \mathbf{A}_k^T + \mathbf{Q}_k Pk=AkPk1AkT+Qk

  • 更新(校正预测):
    K k = P k − H k T ( H k P k − H k T + R k ) − 1 \mathbf{K}_k = P_k^- \mathbf{H}_k^T (\mathbf{H}_k P_k^- \mathbf{H}_k^T + \mathbf{R}_k)^{-1} Kk=PkHkT(HkPkHkT+Rk)1
    x ^ k = x ^ k − + K k ( z k − H k x ^ k − ) \hat{\mathbf{x}}_k = \hat{\mathbf{x}}_k^- + \mathbf{K}_k (\mathbf{z}_k - \mathbf{H}_k \hat{\mathbf{x}}_k^-) x^k=x^k+Kk(zkHkx^k)
    P k = ( I − K k H k ) P k − P_k = (I - \mathbf{K}_k \mathbf{H}_k) P_k^- Pk=(IKkHk)Pk

5. 初始条件:
初始状态估计 x ^ 0 \hat{\mathbf{x}}_0 x^0 和初始协方差矩阵 P 0 P_0 P0

在这个例子中, Δ t \Delta t Δt 是两次测量之间的时间间隔, A k \mathbf{A}_k Ak B k \mathbf{B}_k Bk H k \mathbf{H}_k Hk 分别是状态转移矩阵、输入矩阵、测量矩阵, Q k \mathbf{Q}_k Qk R k \mathbf{R}_k Rk 是过程噪声和测量噪声的协方差矩阵。

请注意,实际应用中需要根据具体情况调整模型参数和噪声协方差。这个简单的示例提供了一个基本框架,你可以根据实际需求进行调整。

背景知识

当我们谈论线性方程组和矩阵时,可以使用以下对比表达:

1. 线性方程组:

考虑一个包含两个方程的线性方程组:
2 x + 3 y = 10 4 x − 2 y = 5 \begin{align*} 2x + 3y &= 10 \\ 4x - 2y &= 5 \end{align*} 2x+3y4x2y=10=5

2. 矩阵表示:

将系数和常数项整理为矩阵形式,得到增广矩阵:
[ 2 3 ∣ 10 4 − 2 ∣ 5 ] \begin{bmatrix} 2 & 3 & \vert & 10 \\ 4 & -2 & \vert & 5 \end{bmatrix} [2432105]
增广矩阵(Augmented Matrix)是一种将线性方程组的系数矩阵和常数项列合并成一个矩阵的表示方法。在增广矩阵中,系数矩阵的最后一列通常与一竖线隔开,而常数项则位于这条竖线的右侧。这样的表示有助于简化线性方程组的解法,特别是在使用矩阵运算的情况下。
它在线性代数中被广泛应用,特别是在使用高斯消元法或矩阵运算求解线性方程组时。增广矩阵的形式简化了表达,使得我们可以更方便地应用矩阵运算来解决线性方程组。

3. 矩阵运算:

假设有两个矩阵:

A = [ a 11 a 12 a 21 a 22 ] \mathbf{A} = \begin{bmatrix} a_{11} & a_{12} \\ a_{21} & a_{22} \end{bmatrix} A=[a11a21a12a22]

B = [ b 11 b 12 b 21 b 22 ] \mathbf{B} = \begin{bmatrix} b_{11} & b_{12} \\ b_{21} & b_{22} \end{bmatrix} B=[b11b21b12b22]

  • 加法:

矩阵的加法(Matrix Addition)是指将两个具有相同维度的矩阵相对应的元素相加得到一个新的矩阵的运算。这个运算对于两个矩阵,它们的行数和列数必须相等。

它们的和( A + B \mathbf{A} + \mathbf{B} A+B)为:

A + B = [ a 11 + b 11 a 12 + b 12 a 21 + b 21 a 22 + b 22 ] \mathbf{A} + \mathbf{B} = \begin{bmatrix} a_{11} + b_{11} & a_{12} + b_{12} \\ a_{21} + b_{21} & a_{22} + b_{22} \end{bmatrix} A+B=[a11+b11a21+b21a12+b12a22+b22]

简而言之,矩阵的加法是将两个矩阵中对应位置的元素相加,得到一个新的矩阵,其结果的维度与参与运算的矩阵相同。这个操作在线性代数、计算机科学和工程等领域中广泛应用。

  • 乘法: 矩阵的乘法(Matrix Multiplication)是指通过一系列规定的运算,将两个矩阵相乘得到一个新的矩阵的操作。

    它们的乘积( A ⋅ B \mathbf{A} \cdot \mathbf{B} AB)为:

A ⋅ B = [ a 11 b 11 + a 12 b 21 a 11 b 12 + a 12 b 22 a 21 b 11 + a 22 b 21 a 21 b 12 + a 22 b 22 ] \mathbf{A} \cdot \mathbf{B} = \begin{bmatrix} a_{11}b_{11} + a_{12}b_{21} & a_{11}b_{12} + a_{12}b_{22} \\ a_{21}b_{11} + a_{22}b_{21} & a_{21}b_{12} + a_{22}b_{22} \end{bmatrix} AB=[a11b11+a12b21a21b11+a22b21a11b12+a12b22a21b12+a22b22]

在矩阵乘法中,

第一个矩阵的列数必须等于第二个矩阵的行数。
结果矩阵的行数等于第一个矩阵的行数,列数等于第二个矩阵的列数。
乘法的每个元素是通过取第一个矩阵的对应行与第二个矩阵的对应列的元素,相乘并求和得到的。

假设有一个列向量:

v = [ x y ] \mathbf{v} = \begin{bmatrix} x \\ y \end{bmatrix} v=[xy]

它们的乘积( A ⋅ v \mathbf{A} \cdot \mathbf{v} Av)为:

A ⋅ v = [ a 11 x + a 12 y a 21 x + a 22 y ] \mathbf{A} \cdot \mathbf{v} = \begin{bmatrix} a_{11}x + a_{12}y \\ a_{21}x + a_{22}y \end{bmatrix} Av=[a11x+a12ya21x+a22y]

矩阵的向量乘法的规则是,对于矩阵 A \mathbf{A} A 的第一行和第二行,分别与向量 v \mathbf{v} v 的元素相乘并相加,得到新的向量。结果向量的维度与矩阵的行数相同。

  • 标量乘法(Scalar Multiplication of a Matrix)是指将矩阵中的每个元素与一个标量相乘的运算。这个标量可以是任意实数或复数。

假设有一个标量 c c c,矩阵 A \mathbf{A} A 与标量 c c c 的乘积( c A c \mathbf{A} cA)为:

c A = [ c ⋅ a 11 c ⋅ a 12 c ⋅ a 21 c ⋅ a 22 ] c \mathbf{A} = \begin{bmatrix} c \cdot a_{11} & c \cdot a_{12} \\ c \cdot a_{21} & c \cdot a_{22} \end{bmatrix} cA=[ca11ca21ca12ca22]

在这个运算中,矩阵中的每个元素都与标量 c c c 相乘,得到一个新的矩阵。这使得矩阵的每个元素都按照相同的比例进行缩放。

  • 转置:
    如果  A = [ a b c d ] ,则  A T = [ a c b d ] \text{如果 } A = \begin{bmatrix} a & b \\ c & d \end{bmatrix} \text{,则 } A^T = \begin{bmatrix} a & c \\ b & d \end{bmatrix} 如果 A=[acbd],则 AT=[abcd]
  • 逆矩阵:
    如果  A = [ a b c d ]  且 det ( A ) ≠ 0 , 则  A − 1 = 1 det ( A ) [ d − b − c a ] \text{如果 } A = \begin{bmatrix} a & b \\ c & d \end{bmatrix} \text{ 且 } \text{det}(A) \neq 0 \text{, 则 } A^{-1} = \frac{1}{\text{det}(A)} \begin{bmatrix} d & -b \\ -c & a \end{bmatrix} 如果 A=[acbd]  det(A)=0  A1=det(A)1[dcba]
    这里, A A A B B B 是矩阵,而 a , b , c , d , e , f , g , h a, b, c, d, e, f, g, h a,b,c,d,e,f,g,h 是矩阵中的元素。这是一些基本的矩阵运算

矩阵乘法和矩阵方程可以从不同的视角来理解,这有助于更全面地理解这些概念。

1. 线性变换的视角:

  • 矩阵乘法: 可以看作是一个线性变换的组合。假设有两个矩阵 A A A B B B,它们分别表示两个线性变换。将一个向量 v v v 通过 B B B 的变换得到 B v Bv Bv,然后再通过 A A A 的变换得到 A B v ABv ABv。因此, A B AB AB 表示的是先进行 B B B 的线性变换,再进行 A A A 的线性变换。

  • 矩阵方程: 考虑线性方程组 A x = b \mathbf{Ax} = \mathbf{b} Ax=b,其中 A \mathbf{A} A 是一个矩阵, x \mathbf{x} x b \mathbf{b} b 是向量。这个方程可以看作是在向量空间中进行的线性变换,矩阵 A \mathbf{A} A 表示这个变换。

2. 组合和分解的视角:

  • 矩阵乘法: 可以看作是将一个矩阵分解为若干个基本的矩阵相乘的组合。例如,一个矩阵 C C C 可以分解为 A B AB AB,其中 A A A B B B 是两个基本矩阵。这种分解有助于理解复杂的矩阵变换。

  • 矩阵方程: 可以看作是在矩阵方程 A X = B \mathbf{AX} = \mathbf{B} AX=B 中,通过矩阵 A \mathbf{A} A 对矩阵 X \mathbf{X} X 进行一次线性变换,从而得到矩阵 B \mathbf{B} B。这也可以理解为在矩阵空间中的组合和分解的操作。

3. 向量空间的视角:

  • 矩阵乘法: 可以看作是在向量空间中的映射。矩阵 A A A 作用于向量 v v v,得到一个新的向量 A v Av Av,这实际上是将 v v v 映射到一个新的向量空间中。

  • 矩阵方程: 可以看作是在向量空间中求解一个线性方程组。矩阵 A \mathbf{A} A 作用于向量 x \mathbf{x} x,得到向量 b \mathbf{b} b。矩阵方程描述了在向量空间中的线性关系。

协方差(Covariance)的计算公式如下:

对于两个随机变量 X 和 Y,其协方差可以通过以下公式计算:

Cov(X, Y) = ∑ ( X i − X ˉ ) ( Y i − Y ˉ ) n \text{Cov(X, Y)} = \frac{\sum{(X_i - \bar{X})(Y_i - \bar{Y})}}{n} Cov(X, Y)=n(XiXˉ)(YiYˉ)

其中, X ˉ \bar{X} Xˉ Y ˉ \bar{Y} Yˉ 分别代表 X 和 Y 的均值, X i X_i Xi Y i Y_i Yi 代表 X 和 Y 的第 i 个观测值,n 代表观测值的数量。

这个公式表示协方差是通过计算每个观测值与其均值的偏差乘积,然后对所有这些偏差乘积求和,最后除以观测值的数量得到的。协方差的正负号表示了变量之间的线性关系,正值表示正相关,负值表示负相关,而数值的大小表示了关系的强度。

在Excel中,你可以使用COVARIANCE.S函数来直接计算协方差,而不需要手动计算。

  • 18
    点赞
  • 25
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值