提示:文章写完后,目录可以自动生成,如何生成可参考右边的帮助文档
机器学习与深度学习
前言
随着人工智能的不断发展,机器学习这门技术也越来越重要。现实生活中如价格预测、数据归类,人脸识别,语音识别等均用到机器学习的技术。那么,我们将如何理解机器学习这项技术?为何机器学习与数学紧密相关?机器学习流行的数据模型有哪些?我们将如何根据现实问题,借助模型去实现自己的机器学习项目?
-----以下为基于b站李宏毅老师和吴恩达老师的课程的理解
一、什么是机器学习?
传统的项目代码实现,本质上就是人为构建一个算法,将其代码化后,输入参数得想要的结果。机器学习就是将构建算法这个部分的工作交付给机器去实现。即人只需要提供数学模型和样本数据,而不断的拟合直到形成一个较为准确的算法这部分工作,由机器完成。
简而言之,机器学习就是将构建function的工作交由机器自主完成,从而将人从这一个部分的工作解放出来。
一般的问题场景可以分为三类:regression、classification、structure learning。
regression是统计学上的一个概念,即the relation between selected values of x and observed values of y (from which the most probable value of y can be predicted for any value of x),我理解本质上就是通过样本构建一种relation,比如常见的预测问题,通过已知数据构建一个函数来预测未知数据。
classification更注重对预测的结果进行归类
二、机器学习的几种应用
(简单知道一下这几个名词就行,后面会学)
-
supervised learning(传统):一种建立input到output label的算法;简单来说,就是由人提供(x,y)实例,机器根据学习实例建立一种x到y的映射,从而实现根据x合理预测y。
supervised learning主要有regression与classification两种类型。 -
self-supervised learning:机器通过pre-train model (foundation model) 完成基础的训练,完成下游任务(downstream task)。
知名的的pre train model bert chat-2/3/4等等
notes:这里的数据y是data labeled。supervised learning就是learning from data labeled
与supervised learning相反,unsupervised learning是一种learning from data unlabeled。人不再给数据下定义,而是有机器自动去对数据进行联系。常见如谷歌新闻的的clustering(聚类算法)
- Generative Adversarial Networks:人提供入参与结果,机器自动匹配构建函数。
- Reinforcement Learning RL :通过与环境的交互来学习如何做出最优的决策,它通过试错的方式来学习,不需要标记好的训练数据或者环境的先验知识。
- Anomaly detection:异常检测,目的是指出不属于大部分分类的结果。
- Explainable Ai:让AI解释如何学习以及学到的内容
- Model attack
- Domain adaptation
- Network compression
- Life-long learning
- Meta learning