GNN经典论文一览(学习自用)

1. 基础论文

1.1 GCN (Graph Convolutional Networks)
  • 论文标题Semi-Supervised Classification with Graph Convolutional Networks
  • 作者: Thomas N. KipfMax Welling
  • 摘要: 我们提出了一种可扩展的图结构数据半监督学习方法,该方法基于直接在图上运行的卷积神经网络的有效变体。我们通过谱图卷积的局部一阶近似来选择我们的卷积架构。我们的模型在图边的数量上线性缩放,并学习对局部图结构和节点特征进行编码的隐藏层表示。在引文网络和知识图数据集上的大量实验中,我们证明我们的方法明显优于相关方法。
  • 重要性: 这篇论文引入了图卷积网络(GCN)的概念,并展示了其在节点分类任务中的优越性能。
1.2 GraphSAGE (Graph Sample and Aggregation)
  • 论文标题Inductive Representation Learning on Large Graphs
  • 作者: William L. HamiltonRex YingJure Leskovec
  • 摘要: 事实证明,大图中节点的低维嵌入在从内容推荐到识别蛋白质功能的各种预测任务中非常有用。然而,大多数现有方法要求在嵌入训练期间图中的所有节点都存在;这些先前的方法本质上是传导性的,并且不能自然地推广到看不见的节点。在这里,我们提出 GraphSAGE,一个通用的归纳框架,它利用节点特征信息(例如文本属性)来有效地为以前未见过的数据生成节点嵌入。我们不是为每个节点训练单独的嵌入,而是学习一个通过采样和聚合节点本地邻域的特征来生成嵌入的函数。我们的算法在三个归纳节点分类基准上优于强大的基线:我们根据引文和 Reddit 帖子数据对不断发展的信息图中看不见的节点进行分类,并且我们表明我们的算法使用多图数据集泛化到完全看不见的图蛋白质-蛋白质相互作用。
  • 重要性: 这篇论文提出了GraphSAGE方法,用于在大规模图数据上进行归纳表示学习。
1.3 GAT (Graph Attention Networks)
  • 论文标题Graph Attention Networks
  • 作者: Petar VeličkovićGuillem CucurullArantxa CasanovaAdriana RomeroPietro LiòYoshua Bengio
  • 摘要: 我们提出了图注意力网络(GAT),这是一种对图结构数据进行操作的新型神经网络架构,利用屏蔽自注意力层来解决基于图卷积或其近似的现有方法的缺点。通过堆叠节点能够参与其邻域特征的层,我们可以(隐式)为邻域中的不同节点指定不同的权重,而不需要任何类型的昂贵的矩阵运算(例如求逆)或依赖于对图的了解结构预先。通过这种方式,我们同时解决了基于谱的图神经网络的几个关键挑战,并使我们的模型易于适用于归纳和传导问题。我们的 GAT 模型已在四个已建立的转导和归纳图基准上取得或匹配最先进的结果:Cora、Citeseer 和 Pubmed 引文网络数据集,以及蛋白质-蛋白质相互作用数据集(其中测试图在训练)。
  • 重要性: 引入了注意力机制到图神经网络中,显著提升了模型的表现和灵活性。
1.4 Graph Isomorphism Network (GIN)
  • 论文标题How Powerful are Graph Neural Networks?
  • 作者: Keyulu XuWeihua HuJure LeskovecStefanie Jegelka
  • 摘要: 图神经网络(GNN)是图表示学习的有效框架。 GNN 遵循邻域聚合方案,其中节点的表示向量是通过递归聚合和变换其邻近节点的表示向量来计算的。许多 GNN 变体已经被提出,并在节点和图分类任务上取得了最先进的结果。然而,尽管 GNN 彻底改变了图表示学习,但对其表示属性和局限性的理解仍然有限。在这里,我们提出了一个理论框架,用于分析 GNN 捕获不同图结构的表达能力。我们的结果描述了流行的 GNN 变体(例如图卷积网络和 GraphSAGE)的判别能力,并表明它们无法学习区分某些简单的图结构。然后,我们开发了一个简单的架构,它被证明是 GNN 类中最具表现力的,并且与 Weisfeiler-Lehman 图同构测试一样强大。我们在许多图分类基准上实证验证了我们的理论发现,并证明我们的模型实现了最先进的性能。
  • 重要性: 研究了图神经网络的表达能力,并提出了Graph Isomorphism Network(GIN),其表达能力与 Weisfeiler-Lehman 图同构测试一样强大。
1.5 Graph Networks Framework
  • 论文标题Relational Inductive Biases, Deep Learning, and Graph Networks
  • 作者: Peter W. BattagliaJessica B. HamrickVictor Bapst, et al.
  • 摘要: 人工智能(AI)最近经历了复兴,在视觉、语言、控制和决策等关键领域取得了重大进展。这在一定程度上是由于廉价的数据和廉价的计算资源,这符合深度学习的天然优势。然而,人类智能的许多定义性特征是在截然不同的压力下发展起来的,目前的方法仍然无法实现。特别是,超越个人经验的概括——人类从婴儿期起就具有智能的标志——仍然是现代人工智能面临的巨大挑战。以下是部分立场文件、部分评论和部分统一。我们认为,组合泛化必须是人工智能实现类人能力的首要任务,而结构化表示和计算是实现这一目标的关键。正如生物学合作利用先天和后天一样,我们拒绝在“手工工程”和“端到端”学习之间做出错误的选择,而是提倡一种受益于它们互补优势的方法。我们探索如何在深度学习架构中使用关系归纳偏差来促进对实体、关系和组成它们的规则的学习。我们为人工智能工具包提供了一个新的构建块,具有很强的关系归纳偏差——图网络——它概括和扩展了在图上运行的神经网络的各种方法,并提供了一个简单的界面来操作结构化知识和产生结构化行为。我们讨论图网络如何支持关系推理和组合泛化,为更复杂、可解释和灵活的推理模式奠定基础。作为本文的配套文件,我们发布了一个用于构建图网络的开源软件库,并演示了如何在实践中使用它们。
  • 重要性: 提出了一种通用的图网络框架,统一了各种现有的图神经网络方法,并讨论了其在不同领域的应用。

2. 应用领域论文

2.1 知识图谱上的GNN
  • 论文标题Modeling Relational Data with Graph Convolutional Networks
  • 作者: Michael SchlichtkrullThomas N. KipfPeter BloemRianne van den BergIvan TitovMax Welling
  • 摘要: 知识图支持多种应用,包括问答和信息检索。尽管在创建和维护方面投入了巨大的努力,但即使是最大的(例如 Yago、DBPedia 或 Wikidata)仍然不完整。我们引入关系图卷积网络(R-GCN)并将其应用于两个标准知识库完成任务:链接预测(恢复丢失的事实,即主谓宾三元组)和实体分类(恢复丢失的实体属性)。 R-GCN 与最近一类在图上运行的神经网络相关,专门为处理现实知识库的高度多关系数据特征而开发。我们证明了 R-GCN 作为实体分类的独立模型的有效性。我们进一步表明,通过使用编码器模型丰富它们,以积累关系图中多个推理步骤的证据,可以显着改进用于链接预测的分解模型(例如 DistMult),证明 FB15k-237 比解码器有 29.8% 的大幅改进 -只有基线。
  • 重要性: 研究了如何将GCN应用于知识图谱数据上的任务,如链接预测和实体分类。
2.2 图生成模型
  • 论文标题GraphVAE: Towards Generation of Small Graphs Using Variational Autoencoders
  • 作者: Martin SimonovskyNikos Komodakis
  • 摘要:图的深度学习已成为具有许多应用的热门研究课题。然而,过去的工作集中在学习图嵌入任务上,这与图像和文本生成模型的进展形成鲜明对比。是否有可能将这一进展转移到图领域?我们建议通过让解码器立即直接输出预定义最大尺寸的概率全连接图来回避与此类离散结构的线性化相关的障碍。我们的方法被表述为变分自动编码器。我们评估分子生成的挑战性任务。
  • 重要性: 提出了基于变分自编码器(VAE)的图生成模型,揭示了图生成模型的潜力。

3. 综合综述

3.1 图神经网络全面综述
  • 论文标题A Comprehensive Survey on Graph Neural Networks
  • 作者: Zonghan WuShirui PanFengwen ChenGuodong LongChengqi ZhangPhilip S. Yu
  • 摘要:近年来,深度学习彻底改变了许多机器学习任务,从图像分类和视频处理到语音识别和自然语言理解。这些任务中的数据通常在欧几里得空间中表示。然而,越来越多的应用程序从非欧几里得域生成数据,并表示为对象之间具有复杂关系和相互依赖关系的图形。图数据的复杂性给现有的机器学习算法带来了巨大的挑战。最近,出现了许多关于扩展图数据深度学习方法的研究。在本次调查中,我们全面概述了数据挖掘和机器学习领域的图神经网络(GNN)。我们提出了一种新的分类法,将最先进的图神经网络分为四类,即循环图神经网络、卷积图神经网络、图自动编码器和时空图神经网络。我们进一步讨论了图神经网络在各个领域的应用,并总结了图神经网络的开源代码、基准数据集和模型评估。最后,我们提出了这个快速发展领域的潜在研究方向。
  • 重要性: 这篇综述详尽地介绍了图神经网络的各类方法、应用场景和未来发展方向,是学习GNN的优秀参考资料。
### DeepSeekMoE 实现极致专家专业化 在 Mixture-of-Experts (MoE) 语言模型中,DeepSeekMoE 致力于实现专家的极致专业化。为了达到这一目标,该研究引入了一种新颖的方法来处理专家之间的知识共享和隔离问题。 #### 共享专家隔离机制 分配给不同专家的 token 可能需要一些共同的知识,这可能导致多个专家在其参数中收敛于相同的共享知识,进而造成专家参数的冗余[^2]。为了避免这种冗余并提高参数效率,DeepSeekMoE 设计了一个特殊的共享专家子集。这些共享专家始终处于激活状态,负责捕捉和整合跨上下文的通用知识。因此,其他路由专家可以专注于更特定的任务,减少了重复学习的可能性,提升了整体模型性能和资源利用效率。 #### 极致专家专业化策略 除了上述提到的共享专家外,DeepSeekMoE 还采用了多种技术手段促进各领域内专家的专业化程度: - **动态调整门控网络**:通过优化门控函数的设计,使得每个输入样本能够被最合适的少数几个专家处理,而不是平均分布到所有可用专家上; - **自适应训练方案**:根据不同阶段的学习需求灵活改变损失权重以及正则项强度等因素; - **多任务联合训练框架**:鼓励各个专精方向上的专家不仅要在单一目标任务上有出色表现,在辅助任务方面也需具备一定能力,以此增强泛化性和鲁棒性。 ```python def dynamic_gating_network(input_tensor, expert_weights): """ 动态调整门控网络示例 参数: input_tensor: 输入张量 expert_weights: 各位专家对应的权值向量 返回: selected_experts_indices: 被选中的几位专家索引列表 """ scores = tf.matmul(input_tensor, expert_weights) top_k_values, top_k_indices = tf.nn.top_k(scores, k=3) return top_k_indices.numpy().tolist() ```
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值