五只猴子分桃子问题(编程法和不编程法)

本文介绍了五只猴子分桃子的问题,通过编程和非编程两种方法进行解答。编程法利用递归逻辑推算初始桃子数量,非编程法则通过加4个桃子实现整数分配。作者强调了解题的逻辑推理更为重要,而程序是思考的结晶,不应混淆思考过程和代码实现。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

题目:海滩上有一堆桃子,五只猴子来分。第一只猴子把这堆桃子平均分为五份,多了一个,这只猴子把多的一个扔入海中,拿走了一份。第二只猴子把剩下的桃子又平均分成五份,又多了一个,它同样把多的一个扔入海中,拿走了一份,第三、第四、第五只猴子都是这样做的,问海滩上原来最少有多少个桃子?

解法一 

编程解法。看一个问题是否具备编程来解的条件,就看解决问题的逻辑是否能分解成重复的步骤,且步骤退出条件是明确易表示的。

假设海滩上总共有y个桃子,最后海滩上剩下了x个桃子,x至少是从4开始(因为被五等分,还拿走了一个),y必须是整数。

我们用y-(int)y!=0为真来确定y是整数。一开始为了让程序能执行下去,我们设y的初值为一个小数,比如1.5 。

逆时间推理,每只猴子做的事情是相似的,所以不断扩展x即可。

第5只猴子没分之前,还有(5/4)*x+1个桃子;

第4只猴子没分之前,还有((5/4)*x+1)*(5/4)+1个桃子;

第3只猴子没分之前,还有(((5/4)*x+1)*(5/4)+1)*(5/4)+1个桃子;

......

最后,y=((((1.25*x+1)*1.25+1)*1.25+1)*1.25+1)*1.25+1。

#include <stdio.h>
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值