学点数学(4)-协方差矩阵

协方差矩阵


(从随机变量讲起)
随机变量x:表示随机试验各种结果的 实值 单值函数,就是说随机变量x是一个函数映射,其取值为标量。

随机变量有离散型和连续型,离散型:抛10次硬币,硬币正面朝上的次数。连续型:某一地区一天内每一时刻的温度。

随机变量的性质由其统计量表示,常用的统计量有随机变量的:均值方差

离散型随机变量x,取值序列 { x 1 , x 2 , . . . . , x n } \{x_1,x_2,....,x_n\} {x1,x2,....,xn}的均值为:
μ = 1 n ∑ i = 1 n x i \mu=\frac{1}{n}\sum_{i=1}^nx_i μ=n1i=1nxi
均值可以 量化 这个随机变量值 大小。

离散型随机变量x,取值序列 { x 1 , x 2 , . . . . , x n } \{x_1,x_2,....,x_n\} {x1,x2,....,xn}的方差为:
σ = 1 n ∑ i = 1 n ( x i − μ ) 2 \sigma=\frac{1}{n}\sum_{i=1}^{n}(x_i-\mu)^2 σ=n1i=1n(xiμ)2
方差表明取值序列的 离散程度

当分析两个随机变量x,y之间关系的时候,协方差 的概念 由此引出:
两个随机变量取值序列 { x 1 , x 2 , . . . . , x n } \{x_1,x_2,....,x_n\} {x1,x2,....,xn}, { y 1 , y 2 , . . . . , y n } \{y_1,y_2,....,y_n\} {y1,y2,....,yn}之间的协方差:
c o v ( x , y ) = 1 n ∑ i = 1 n ( x i − μ x ) ( y i − μ y ) cov(x,y)=\frac{1}{n}\sum_{i=1}^n(x_i-\mu_x)(y_i-\mu_y) cov(x,y)=n1i=1n(xiμx)(yiμy)

协方差矩阵

我们在实际中,经常会遇到协方差矩阵,给定一个n个 d ∗ 1 d*1 d1维的(列)向量数据 { x 1 , x 2 , . . . , x n } \{\bm{x_1},\bm{x_2},...,\bm{x_n}\} {x1,x2,...,xn},这组数据的协方矩阵为:
Σ = 1 n ∑ i = 1 n ( x i − μ ) ( x i − μ ) T \Sigma=\frac{1}{n}\sum_{i=1}^n(\bm{x_i}-\bm{\mu})(\bm{x_i}-\bm{\mu})^T Σ=n1i=1nxiμ(xiμ)T
其中: μ = 1 n ∑ x i \bm{\mu}=\frac{1}{n}\sum\bm{x_i} μ=n1xi

以上协方差矩阵 Σ \Sigma Σ实际是记录 以向量 x \bm{x} x各个(d个)维度为随机变量 的d个随机变量之间的协方差。

x i j \bm{x}_i^j xij下标表示第 i i i个向量数据,上标表示第 i i i个向量的第 j j j个分量,则 Σ \Sigma Σ是一个 d ∗ d d*d dd的矩阵:
Σ = 1 n ∑ [ x i 1 − μ 1 x i 2 − μ 2 . . . x i d − μ d ] ∗ [ x i 1 − μ 1 , x i 2 − μ 2 , . . . , x i d − μ d ] \Sigma=\frac{1}{n}\sum \left[ \begin{matrix} \bm{x_i^1}-\bm{\mu^1}\\ \bm{x_i^2}-\bm{\mu^2}\\ ...\\ \bm{x_i^d}-\bm{\mu^d} \end{matrix} \right] * \left[ \begin{matrix} \bm{x_i^1}-\bm{\mu^1} ,& \bm{x_i^2}-\bm{\mu^2},& ...,& \bm{x_i^d}-\bm{\mu^d} \end{matrix} \right] Σ=n1xi1μ1xi2μ2...xidμd[xi1μ1,xi2μ2,...,xidμd]

= 1 n ∑ [ ( x i 1 − μ 1 ) ( x i 1 − μ 1 ) , ( x i 1 − μ 1 ) ( x i 2 − μ 2 ) , . . . , ( x i 1 − μ 1 ) ( x i d − μ d ) ( x i 2 − μ 2 ) ( x i 1 − μ 1 ) , ( x i 2 − μ 2 ) ( x i 2 − μ 2 ) , . . . , ( x i 2 − μ 2 ) ( x i d − μ d ) . . . ( x i d − μ d ) ( x i 1 − μ 1 ) , ( x i d − μ d ) ( x i 2 − μ 2 ) , . . . , ( x i d − μ d ) ( x i d − μ d ) ] =\frac{1}{n}\sum \left[ \begin{matrix} ( \bm{x_i^1}-\bm{\mu^1})( \bm{x_i^1}-\bm{\mu^1}) ,&( \bm{x_i^1}-\bm{\mu^1})(\bm{x_i^2}-\bm{\mu^2}),&...,&( \bm{x_i^1}-\bm{\mu^1})(\bm{x_i^d}-\bm{\mu^d})\\ ( \bm{x_i^2}-\bm{\mu^2})( \bm{x_i^1}-\bm{\mu^1}) ,&( \bm{x_i^2}-\bm{\mu^2})(\bm{x_i^2}-\bm{\mu^2}),&...,&( \bm{x_i^2}-\bm{\mu^2})(\bm{x_i^d}-\bm{\mu^d})\\ ...\\ ( \bm{x_i^d}-\bm{\mu^d})( \bm{x_i^1}-\bm{\mu^1}) ,& ( \bm{x_i^d}-\bm{\mu^d})(\bm{x_i^2}-\bm{\mu^2}),&...,& ( \bm{x_i^d}-\bm{\mu^d})(\bm{x_i^d}-\bm{\mu^d})\\ \end{matrix} \right] =n1(xi1μ1)(xi1μ1),(xi2μ2)(xi1μ1),...(xidμd)(xi1μ1),(xi1μ1)(xi2μ2),(xi2μ2)(xi2μ2),(xidμd)(xi2μ2),...,...,...,(xi1μ1)(xidμd)(xi2μ2)(xidμd)(xidμd)(xidμd)

在PCA 算法中就需要对样本协方差矩阵进行特征值分解。

  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 1
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值