【论文】X2CT-GAN

 X2CT-GAN :Reconstructing CT from Biplanar X-Rays with Generative Adversarial Networks

论文  | 翻译 |

【走马观花】

CVPR2019论文集锦 | cpvr2019 | cvpr2019-论文/代码/项目/论文阅读 | cpvr-目标检测 2D/3D/显著性目标检测等 | 2019cpvr按方向划分 -2019CPVR 论文更新跟进√ | cpvr2019 | 目标检测 | 1 | 三大顶会十年 SinGAN:从单张图像学习生成模型|

cpvr2020图像分割论文 |

探讨可解释深度学习技术在医疗图像诊断中的应用 | DL在医学图像处理上的应用 | 医学图像处理 | 影像园-医学 | 颅脑CT和MR |

cvpr论文解读 | cv三大顶级会议ICE:ICCV/CVPR/ECCV | GAN-后面可以看一下除了cvpr其他两个有没有对这个内容的相关技术和发展介绍等 |

【来源|背景|意义】

腾讯优图实验室 |

腾讯58篇论文入选CVPR 2019,涵盖视觉对抗学习等方向 | 背景 |

2D-X光图像重建3D-CT图像项目总结 |  

【专业名词/概念】

影像园-放射 | 什么是放射科 | 医疗设备 | 

【摘要】

计算机断层扫描Computed Tomography,CT |放射科辐射到底多大 | CT基础知识 | 

均方误差损失函数 | 最小二乘和MSE区别 | DL中MSE |

niche | 

【介绍】

CT Volume - CT容积扫描 | 体绘制(Volume Rendering)概述 | CT和MRI | 像素(Pixel)是构成图像的基本单位,即图像可被分解成的最小的独立信息单元。因为图像是二维的,所以像素也是没有“厚度”概念的,其最大特点就是一个二维的概念。体素(Voxel)是指像素所对应的体积单位,与像素不同点在于,体素是一个三维的概念,是有厚度差别的,图像所对应的层厚就是体素的“高度”。基本概念 | 

 PA前后视图 | Anterior and Posterior -相关医术词-示意图√| 图片检索目录 | PA flexed better than AP | 

DDR数字化成像 | DDR应用 √| DRR(Digitally Reconstructured Radiograph)-数字重建放射影像-picDR |3DCT重建 | DRR | 

跨模态 | 多模态融合 | 读论文 | 跨模态常见指标 | 文-基于dl的跨模态迁移学习研究 |

【3-目标函数】

GAN及LOSS函数详解 | GAN Loss | 李宏毅-GAN | GAN及Pytorch实现 | 李宏毅Conditional GAN | 

GAN系列-原理-√ |一文看懂GAN | 

GAN入门 | ★GAN做什么、损失函数、训练过程 -生成能以假乱真的高分辨率图像 |

对抗性损失 | GAN-minmax game | GAN介绍- | min maxV(D,G) | minmax | minmax | GAN框架 | GAN算法 | GAN+代码 |

LSGAN | LSGAN |

CT的axial/sagittal/coronal views | 人体各组织结构不同,对X线吸收程度各异,形成不同的CT值,因此可以利用CT值来鉴别组织的性质 |

 

【4-网络结构】

卷积(Convolution)填充(Padding)步长(Stride) |

PatchGAN | PatchGAN理解 |理解 |PatchGAN的理解 | 马尔可夫判别器 |

Epoch、Batch Size和迭代 | epoch、batch_size、interations |

归一化比较with图 | 批量归一化和实例归一化 |

DenseNet:Dense Block是DenseNet的核心、| DenseNet的一个核心就是在网络中使用了大量如图6.11所示的Dense Block,它是一种具有紧密连接性质的卷积神经网络,该神经网络中的任何两层都有直接连接,即网络中每一层的输入都是前面所有层输出的并集,而这一层学习到的特征也会被直接传递到后面的所有层作为输入。这种紧密连接仅仅存在于同一个Dense Block中,不同的Dense Block是没有这种紧密连接的。| 

5、实验

baseline model基准模型  | 记录baseline model | kaggle特征工程baseline | baseline检索目录 |

各向异性(anisotropic) | 各向同性(isotropic) |  

度量指标:图像质量评估指标SSIM/ PSNR/ MSE |SSIM  | SSIM和MSSIM | PSNR与SSIM | SSIM原理及python实现 | PNSR和SSIM | SSIM | SSIM | SSIM | 常用损失函数对比 | 原理★|图像融合评价指标 | 公式及python实现 | 全参考视频质量评价方法PNSRSSIM及数据库解析PNSR和SSIM | SSIM及实现去噪效果评价算法SNR,PSNR,SSIM对比对比 |论文笔记-损失函数之SSIM |

CT值(Hounsfield Unit) |

Ablation study -tag下其他文章 | 消融实验 | 删除模型/算法的某些功能并查看其如何影像性能->了解每个部分单独能发挥的作用~控制变量法 |

感想与拓展:

GALAXIS / GALILEOS Image Viewer | GALAXIS Viewer GALAXIS 是用于牙科诊所和诊所的软件,可用于准备颌面部区域的 3D 体积重建 |

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值