【Python机器学习系列】建立XGBoost模型预测心脏疾病(完整实现过程)

一、引言

前文回顾:

一文彻底搞懂机器学习中的归一化与反归一化问题

【Python机器学习系列】一文彻底搞懂机器学习中表格数据的输入形式(理论+源码)

【Python机器学习系列】一文带你了解机器学习中的Pipeline管道机制(理论+源码)

【Python机器学习系列】一文搞懂机器学习中的转换器和估计器(附案例)

【Python机器学习系列】一文讲透机器学习中的K折交叉验证(源码)

【Python机器学习系列】拟合和回归傻傻分不清?一文带你彻底搞懂它

【Python机器学习系列】建立决策树模型预测心脏疾病(完整实现过程)

【Python机器学习系列】建立支持向量机模型预测心脏疾病(完整实现过程)

【Python机器学习系列】建立逻辑回归模型预测心脏疾病(完整实现过程)

【Python机器学习系列】建立KNN模型预测心脏疾病(完整实现过程)

【Python机器学习系列】建立随机森林模型预测心脏疾病(完整实现过程)

【Python机器学习系列】建立梯度提升模型预测心脏疾病(完整实现过程)

对于表格数据,一套完整的机器学习建模流程如下:

图片

       针对不同的数据集,有些步骤不适用即不需要做,其中橘红色框为必要步骤,由于数据质量较高,本文有些步骤跳过了,跳过的步骤将单独出文章总结!同时欢迎大家关注翻看我之前的一些相关文章。

      XGBoost(eXtreme Gradient Boosting)极致梯度提升,是一种基于GBDT的算法或者说工程实现。XGBoost通过集成多个决策树模型来进行预测,并通过梯度提升算法不断优化模型的性能。XGBoost的基本思想和GBDT相同,但是做了一些优化,比如二阶导数使损失函数更精准;正则项避免树过拟合;Block存储可以并行计算等。本文利用xgboost实现了基于心脏疾病数据集建立XGBoost分类模型对心脏疾病患者进行分类预测的完整过程。

# pip install xgboost
from xgboost.sklearn import XGBClassifier

二、实现过程

1、准备数据

data = pd.read_csv(r'Dataset.csv')
df = pd.DataFrame(data)

df:

图片

数据基本信息:

print(df.head())
print(df.info())
print(df.shape)
print(df.columns)
print(df.dtypes)
cat_cols = [col for col in df.columns if df[col].dtype == "object"] # 类别型变量名
num_cols = [col for col in df.columns if df[col].dtype != "object"] # 数值型变量名

2、提取特征变量和目标变量

target = 'target'
features = df.columns.drop(target)
print(data["target"].value_counts()) # 顺便查看一下样本是否平衡

3、数据集划分

# df = shuffle(df)
X_train, X_test, y_train, y_test = train_test_split(df[features], df[target], test_size=0.2, random_state=0)

4、模型的构建与训练

# 模型的构建与训练
model = xgb.XGBClassifier(n_estimators=100, max_depth=10)
model.fit(X_train, y_train)

参数详解:

import xgboost as xgb
# 参数
class XGBModel(XGBModelBase):
    # pylint: disable=too-many-arguments, too-many-instance-attributes, missing-docstring
    def __init__(
        self,
        max_depth: Optional[int] = None,
        max_leaves: Optional[int] = None,
        max_bin: Optional[int] = None,
        grow_policy: Optional[str] = None,
        learning_rate: Optional[float] = None,
        n_estimators: int = 100,
        verbosity: Optional[int] = None,
        objective: _SklObjective = None,
        booster: Optional[str] = None,
        tree_method: Optional[str] = None,
        n_jobs: Optional[int] = None,
        gamma: Optional[float] = None,
        min_child_weight: Optional[float] = None,
        max_delta_step: Optional[float] = None,
        subsample: Optional[float] = None,
        sampling_method: Optional[str] = None,
        colsample_bytree: Optional[float] = None,
        colsample_bylevel: Optional[float] = None,
        colsample_bynode: Optional[float] = None,
        reg_alpha: Optional[float] = None,
        reg_lambda: Optional[float] = None,
        scale_pos_weight: Optional[float] = None,
        base_score: Optional[float] = None,
        random_state: Optional[Union[np.random.RandomState, int]] = None,
        missing: float = np.nan,
        num_parallel_tree: Optional[int] = None,
        monotone_constraints: Optional[Union[Dict[str, int], str]] = None,
        interaction_constraints: Optional[Union[str, Sequence[Sequence[str]]]] = None,
        importance_type: Optional[str] = None,
        gpu_id: Optional[int] = None,
        validate_parameters: Optional[bool] = None,
        predictor: Optional[str] = None,
        enable_categorical: bool = False,
        feature_types: FeatureTypes = None,
        max_cat_to_onehot: Optional[int] = None,
        max_cat_threshold: Optional[int] = None,
        eval_metric: Optional[Union[str, List[str], Callable]] = None,
        early_stopping_rounds: Optional[int] = None,
        callbacks: Optional[List[TrainingCallback]] = None,
        **kwargs: Any,
    ) -> None:

5、模型的推理与评价

y_pred = model.predict(X_test)
y_scores = model.predict_proba(X_test)
acc = accuracy_score(y_test, y_pred) # 准确率acc
cm = confusion_matrix(y_test, y_pred) # 混淆矩阵
cr = classification_report(y_test, y_pred) # 分类报告
fpr, tpr, thresholds = roc_curve(y_test, y_scores[:, 1], pos_label=1) # 计算ROC曲线和AUC值,绘制ROC曲线
roc_auc = auc(fpr, tpr)
plt.figure()
plt.plot(fpr, tpr, color='darkorange', lw=2, label='ROC curve (area = %0.2f)' % roc_auc)
plt.plot([0, 1], [0, 1], color='navy', lw=2, linestyle='--')
plt.xlim([0.0, 1.0])
plt.ylim([0.0, 1.05])
plt.xlabel('False Positive Rate')
plt.ylabel('True Positive Rate')
plt.title('Receiver Operating Characteristic')
plt.legend(loc="lower right")
plt.show()

cm:

图片

cr:

图片

ROC:

图片

作者简介:

读研期间发表6篇SCI数据挖掘相关论文,现在某研究院从事数据算法相关科研工作,结合自身科研实践经历不定期分享关于Python、机器学习、深度学习、人工智能系列基础知识与应用案例。致力于只做原创,以最简单的方式理解和学习,关注我一起交流成长。需要数据集和源码的小伙伴可以关注底部公众号添加作者微信。

  • 17
    点赞
  • 22
    收藏
    觉得还不错? 一键收藏
  • 打赏
    打赏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

数据杂坛

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值