细粒度IP定位参文14(DisenKGAT): Knowledge graph embedding with disentangled graph attention network

DisenKGAT是一种新的知识图谱嵌入方法,通过解耦转换和关系感知信息聚合实现微观解耦,结合独立性限制(宏观解耦)利用互信息作为正则化,提升模型在复杂多关系知识图谱补全任务中的性能。文章介绍了模型结构、实验结果,证明了模型的优越性和鲁棒性。
摘要由CSDN通过智能技术生成

[14] J. Wu et al., “DisenKGAT: Knowledge graph embedding with disentangled graph attention network,” in Proc. ACM Int. Conf. Inf. Knowl. Manage., 2021, pp. 2140–2149.(DisenKGAT:带有解纠缠图注意网络的知识图嵌入)

原文:https://arxiv.org/pdf/2108.09628.pdf


ABSTRACT

传统知识图谱补全方法单一、静态,不足以准确地捕获复杂关系。本文作者提出了一种新的解耦知识图谱注意网络(DisenKGAT)它利用微观解耦(新的关系感知聚合)和宏观解耦(利用互信息作为正则化来增强独立性)来挖掘知识图谱背后的表示,效果甚好。


KEYWORDS

知识图谱,图神经网络,解耦表示,互信息


1 INTRODUCTION

知识图谱补全(KGC),即基于知识图谱嵌入(KGE)方法,预测一个新的给定三元组是否有效。

传统模型忽略了有意义的图上下文信息,因此需要利用图卷积神经网络(分层传播来收集相邻实体嵌入)。

CompGCNGCN聚合与打分函数相结合,构建知识图补全中的编码器-解码器范式,但静态表示限制了嵌入的灵活性和表达能力,特别是在复杂的一对多(1-to-N)、多对一(N-to-1)和多对多(N-to-N)关系中。

为啥静态表示有点不太行?举个例子:

众所周知,“国籍”和“职业”都是一对多关系。科比和比尔盖茨,一个是打篮球的,一个是开公司的,差了十万八千里。但就因为他俩都是美国人,使得“国籍”这一静态且唯一的表征,会显著影响图谱补全的效果,不能根据场景的动态变化生成不同的适应性表征。说通俗点就是,你说他俩在国籍上相似,但马上话题一变,聊职业了,你再谈国籍上的相似性,对不起不仅不管用了,还会干扰话题。

总结传统模型的劣势:

(1)按理来说,同一实体在不同场景下应当展现出不同的表征含义,但传统模型简单粗暴地聚合邻域实体,无法有效地建模关键关系(邻居边信息往往蕴含着实际预测的场景)。

(2)忽视了实体嵌入背后隐因子的耦合(其实就是把不同背景的属性邻居一锅炖),而一个实体可能有多个方面,各种关系集中在实体的不同方面。

如下图所示,科比在不同场景下的信息都有邻接关系,比如职业、荣誉、家庭以及地域。假设问你关于科比的儿子信息,显然话题的重心是侧重于他家庭属性下的邻居,如他的妻子以及他的女儿,跟工作、荣誉这些属性扯不上半毛钱关系。

 

(3)基于以上两点,这些方法的可解释性和鲁棒性较低,即容易对不符合当前情景的无关邻居产生过度反应,抹去KG(知识图谱)本身丰富的结构和上下文信息。

本文作者通过引入基于解耦表征的学习框架以解决上述问题。

知识图谱解耦的核心思想为:通过将实体不同主题语义表示进行拆分解耦,根据给定查询针对性匹

  • 27
    点赞
  • 17
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值