RIPGeo中有:
其中是一个常数。它证明了我们实际上优化了
的上界,它确实涉及到数据分布的看不见的样本,从而保证了RIPGeo的通用性。
我们还注意到,我们的扰动训练目标是Lipschitz constraints[44]的一种特殊形式。由于正则化或Lipschitz constraints连续性对训练稳定性[45]和[46]很重要,我们的方法可以有效地提高在训练[47]过程中模型的泛化和鲁棒性。
[44] X. Mao, Y. Ma, Z. Yang, Y. Chen, and Q. Li, “Virtual mixup training for unsupervised domain adaptation,” arXiv preprint arXiv:1905.04215, 2019.
[45] B. Wu, S. Zhao, C. Chen, H. Xu, L. Wang, X. Zhang, G. Sun, and J. Zhou, “Generalization in generative adversarial networks: A novel perspective from privacy protection,” NeurIPS, vol. 32, 2019.
[46] R. Arghal, E. Lei, and S. S. Bidokhti, “Robust graph neural networks via probabilistic lipschitz constraints,” in Learning for Dynamics and Control Conference, 2022.
[47] M. Fazlyab, A. Robey, H. Hassani, M.