线性回归算法梳理

本文详细介绍了线性回归的概念,通过最小二乘法建立模型,并探讨了如何使用梯度下降法求解。此外,还讨论了线性回归在分类问题中的应用,特别是与logistic回归的关系,利用Sigmoid函数将连续预测转换为概率。
摘要由CSDN通过智能技术生成

概念

线性回归是利用数理统计中回归分析,来确定两种或两种以上变量间相互依赖的定量关系的一种统计分析方法。
一个简单例子:银行通过申请人的工资和年龄来评估贷款人可贷款的额度,年龄X1和工资X2是两个特征,我们希望通过X1、X2两个特征来判断贷款额度y。

工资 年龄 额度
4000 25 20000
8000 30 70000
5000 28 35000
7500 33 50000
12000 40 85000

在这里插入图片描述

最小二乘法

上面银行贷款的例子,通过已有X1、X2和y的取值确定拟合平面 h θ = θ 0 + θ 1 X 1 + θ 2 X 2 h_{\theta}=\theta_{0}+\theta_{1}X_{1}+\theta_{2}X_{2} hθ=θ0+θ1X

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值