矩阵论初级知识回顾

  1. AAnn 级方阵,则 A=A|A'|=|A|.
  2. AAnn 级可逆矩阵,则 A1=A1|A|^{-1}=|A^{-1}|.
  3. A,BA,B 均为 nn 级方阵,则 AB=AB=BA|AB|=|A||B|=|BA|.
  4. A,BA,B 均为 nn 级方阵,且 AA 可逆,则 ABBAAB \sim BA.
  5. AAnn 级方阵,且有 nn 个特征 λ1,λ2,...,λn\lambda_1, \lambda_2, ... ,\lambda_n (重根按重数计算),则
    A=λ1λ2...λn|A| = \lambda_1 \lambda_2... \lambda_n tr(A)=a11+a22+...+ann=λ1+λ2+...+λntr(A)=a_{11}+a_{22}+...+a_{nn}=\lambda_1 +\lambda_2+... +\lambda_n
  6. λ\lambda 为 矩阵 AA 的特征值,则 λm\lambda^m 为 矩阵 AmA^m 的特征值,λm+k\lambda^m + k 为 矩阵 Am+kEA^m+k E 的特征值。
  7. 对任意矩阵 A,B\bm{A}, \bm{B} 有, det(I+AB)=det(I+BA)\rm{det}(\bm{I}+\bm{AB})=\rm{det}(\bm{I}+\bm{BA})
    I+AA=I+AA|I+AA'| =|I+A'A| (AAAA)A)(注意,一般情况下|AA'| \neq |A'A| ),除非 A 为对称矩阵。)
  8. AA 为对称可逆矩阵,HH 为任意非零矩阵,则
    HH(HHH+A)1=HHA1(I+HHHA1)1=(I+HHA1H)1HHA1\bm{H}^{\rm{H}}\left(\bm{H}\bm{H}^{\rm{H}}+\bm{A}\right)^{-1}=\bm{H}^{\rm{H}}\bm{A}^{-1}\left(\bm{I}+\bm{HH}^{\rm{H}}\bm{A}^{-1} \right)^{-1} = \left(\bm{I}+\bm{H}^{\rm{H}}\bm{A}^{-1} \bm{H}\right)^{-1}\bm{H}^{\rm{H}}\bm{A}^{-1}
    证明 :HH(HHH+A)1=(I+HHA1H)1HHA1\bm{H}^{\rm{H}}\left(\bm{H}\bm{H}^{\rm{H}}+\bm{A}\right)^{-1}=\left(\bm{I}+\bm{H}^{\rm{H}}\bm{A}^{-1} \bm{H}\right)^{-1}\bm{H}^{\rm{H}}\bm{A}^{-1}
    等式两边同时左乘 (I+HHA1H)\left(\bm{I}+\bm{H}^{\rm{H}}\bm{A}^{-1} \bm{H}\right),右乘(HHH+A)\left(\bm{H}\bm{H}^{\rm{H}}+\bm{A}\right),即
    (I+HHA1H)HH=HHA1(HHH+A)\left(\bm{I}+\bm{H}^{\rm{H}}\bm{A}^{-1} \bm{H}\right)\bm{H}^{\rm{H}}=\bm{H}^{\rm{H}}\bm{A}^{-1}\left(\bm{H}\bm{H}^{\rm{H}}+\bm{A}\right)
    HH+HHA1HHH=HHA1HHH+HHA1A\bm{H}^{\rm{H}}+\bm{H}^{\rm{H}}\bm{A}^{-1} \bm{H}\bm{H}^{\rm{H}}=\bm{H}^{\rm{H}}\bm{A}^{-1} \bm{H}\bm{H}^{\rm{H}}+\bm{H}^{\rm{H}}\bm{A}^{-1}\bm{A}
    得证!
  9. A,B\bm{A} 为对称矩阵, \bm{B} 为正交矩阵, 则
    det(I+A)=det(I+BABH)\rm{det}(\bm{I}+\bm{A})=\rm{det}(\bm{I}+\bm{BAB}^{\rm{H}})
  10. 上(下)三角矩阵的行列式为对角线元素相乘。
  11. Moore–Penrose 伪逆
    (HF)+=(FHHHHF)1FHHH(\mathbf{H F})^{+}=\left(\mathbf{F}^{H} \mathbf{H}^{H} \mathbf{H} \mathbf{F}\right)^{-1} \mathbf{F}^{H} \mathbf{H}^{H}
©️2020 CSDN 皮肤主题: 书香水墨 设计师: CSDN官方博客 返回首页
实付0元
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、C币套餐、付费专栏及课程。

余额充值