矩阵论笔记(一)补 - 维数公式

维数公式

d i m ( V + U ) = d i m V + d i m U − d i m ( V ∩ U ) dim(V+U) = dimV + dimU-dim(V\cap U) dim(V+U)=dimV+dimUdim(VU)

即,和空间的维数等于两空间维数之和减去两空间的交空间的维数

例子:
三维空间中,记 V V V x O y xOy xOy平面, U U U y O z yOz yOz平面 ,即 d i m V = d i m U = 2 dimV = dimU = 2 dimV=dimU=2
它们的和空间是三维空间,即 d i m ( V + U ) = 3 dim(V+U) = 3 dim(V+U)=3
它们的交空间是y轴,即 d i m ( V ∩ U ) = 1 dim(V \cap U)=1 dim(VU)=1
满足维数公式。

  • 2
    点赞
  • 8
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值