[深度学习] 模型集成方法

本文介绍了模型集成方法在深度学习中的应用,包括数据层面的简易集成法和模型层面的单模型集成(如多层特征融合、网络快照集成法)以及多模型集成策略。模型集成能够提高预测性能,缓解数据不平衡问题,并通过直接平均法、加权平均法、投票法和堆叠法等方式实现不同模型的融合。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

模型集成方法

集成学习(ensemble learning)是机器学习中一类学习算法,值训练多个学习器并将它们组合起来使用的方法。这类算法通常在实践中会取得比单个学习器更好的预测结果。

数据层面的集成方法

在训练阶段的数据扩充在测试阶段仍然使用。 诸如图像多尺度, 随机扣取等。以随机扣取为例, 对某张测试图片可得到n 张随机扣取图像,测试阶段只需要用训练好的深度网络模型对n张图分别做预测, 之后将预测的各类置信度平均作为该测试图像最终预测结果即可。

简易集成法

简易集成法是Liu 等人提出的针对不平衡样本问题的一种集成学习解决方案, 具体来说,简易集成法对于样本较多的类采取降采样,每次采样数根据样本数目最少的类别而定,这样,每类取到的样本数可保持均等。 采样结束后, 针对每次采样得到的子数据集训练模型, 如此采样, 训练,反复多次。最后, 对测试数据的预测则根据训练得到若干模型的结果取平均值或投票得出。 总结, 简易集成法在模型集成的同时,还能缓解数据不平衡带来的问题。

模型层面的集成方法

单模型集成

多层特征融合

多层特征融合是针对单模型的一种模型层面的集成方法。 由于深度卷积神经网络特征具有层次性的特点, 不同层特征富含的语义信息可以相互补充, 在图像语义分割, 细粒度图像检索,基于视频的表象性格分析等任务中常见的多层特征融合策略的使用。一般的,多层特征融合操作时可将不同层网络特征级联。而对于特征融合应选取哪些网络层,一个实践经验是:最好使用靠近目标函数的几层卷积特征。因为越深层特征包含的高层语义越强,分辨力也会越强。相反, 网络较浅层的特征较普使, 用于特征融合可能起不到作用,或者甚至会起到相反作用。

网络快照集成法 (snapshot ensemble)

深度神经网络模型复杂的解空间存在非常多的局部最优解, 但经典的随机梯度下降方法只能让网络模型收敛到其中一个局部最优解。 网络快照便利用了网络解空间中这些局部最优解来对单个网络做模型集成。 通过循环调整网络的学习率可使网络依次收敛到不同的局部最优解。
这里写图片描述
最左侧图为传统SGD法, 中间为快照集成法的收敛示意图。 右图为两方法在CIFAR-10数据集上的收敛曲线对比。

具体而言, 网络快照法是将学习率 η η 设置为随模型迭代轮数 t t (iteration,即一次批处理随机梯度下降称为一个迭代轮数)改变的函数,即:

### 关于深度学习集成模型 #### 集成模型的概念与发展 集成模型通过组合多个基础模型来提高预测性能和鲁棒性。在深度学习领域,这种技术同样适用并展现出显著优势[^1]。 #### 常见的集成策略 - **Bagging**: 通过对数据集的不同子样本训练多个相同类型的模型,并最终取平均值或其他聚合方式得到结果。 - **Boosting**: 序列化构建弱分类器,在每一步迭代过程中更加关注之前错误分类的数据点。 - **Stacking (堆叠)**: 使用一层或多层元模型对初级模型的结果进行再处理,从而形成更为复杂的决策结构. #### 实现方法与工具包支持 许多流行的深度学习框架都提供了内置的支持用于创建集成模型。例如TensorFlow/Keras, PyTorch等平台允许开发者轻松地定义多输入/输出架构以及自定义损失函数来进行有效的模型融合操作[^2]. ```python from sklearn.ensemble import VotingClassifier import tensorflow as tf from keras.models import Model # 定义不同的基模型 model_1 = ... model_2 = ... # 创建投票分类器作为顶层集成模型 voting_clf = VotingClassifier(estimators=[('m1', model_1), ('m2', model_2)], voting='soft') ``` #### 学术资源推荐 对于希望深入了解理论背景的研究人员来说,《魏秀参——解析深度学习:卷积神经网络原理与视觉实践 - 第13章 - 模型集成方法》是一本不可多得的好书,书中不仅涵盖了基本概念还探讨了一些高级话题如贝叶斯优化应用于超参数调整等方面的内容.
评论 4
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值