[机器学习] 支持向量机2——对偶问题

支持向量机1——间隔和支持向量

支持向量机2——对偶问题

支持向量机3——引入松弛因子

支持向量机4——SMO算法

支持向量机2

在上一篇中,我们由于要最大化间隔故推导出最终要处理的公式为
(2.1) m i n ω , b 1 2 ∣ ∣ ω ∣ ∣ 2 y i ( ω T x i + b ) > = 1 , i = 1 , 2 , 3... m . min_{\omega,b}\frac{1}{2}{||\omega||^2}\\ y_i(\omega^Tx_i+b)>=1,i=1,2,3...m. \tag{2.1} minω,b21ω2yi(ωTxi+b)>=1,i=1,2,3...m.(2.1)

下面我们的目的就是求解 ω , b \omega,b ω,b使得上式子成立。

对偶问题

为什么要使用对偶问题来求解 ω , b \omega,b ω,b

  1. 不等式的约束一直是优化里的难题,求解对偶问题可以将原来的不等式约束问题变成等式约束。
  2. 支持向量机用到了高维映射,但是映射函数的具体形式几乎完全不确定,而求解对偶问题之后,可以用核函数来处理这个问题。

原始问题是:
(2.1) m i n ω , b 1 2 ∣ ∣ ω ∣ ∣ 2 y i ( ω T x i + b ) > = 1 , i = 1 , 2 , 3... m . min_{\omega,b}\frac{1}{2}{||\omega||^2}\\ y_i(\omega^Tx_i+b)>=1,i=1,2,3...m. \tag{2.1} minω,b21ω2yi(ωTxi+b)>=1,i=1,2,3...m.(2.1)

则该问题的拉格朗日函数:
(2.2) L ( ω , b , α )   =   1 2 ∣ ∣ ω ∣ ∣ 2 + ∑ i = 1 m α i ( 1 − y i ( ω T x i + b ) ) L(\omega,b,\alpha)\ =\ \frac{1}{2}||\omega||^2+\sum_{i=1}^{m}\alpha_i(1-y_i(\omega^Tx_i+b))\tag{2.2} L(ω,b,α) = 21ω2+i=1mαi(1yi(ωTxi+b))(2.2)

可以让原始问题等价于:
(2.3) S V M ≡ min ⁡ b , ω ( max ⁡ a l l   α ≥ 0 L ( ω , b , α ) ) SVM \equiv \min \limits_{b,\omega}\left (\max \limits_{all \ \alpha \ge 0}L(\omega,b,\alpha)\right )\tag{2.3} SVMb,ωmin(all α0maxL(ω,b,α)

  • 3
    点赞
  • 7
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值