[机器学习] 支持向量机1——间隔和支持向量

本文介绍了支持向量机中的间隔和支持向量概念,通过间隔最大化来寻找最佳分类超平面。支持向量是离超平面最近的样本点,间隔最大化能够提高分类的鲁棒性和泛化能力。支持向量机的优势在于其低泛化错误率和易于解释,但也存在对参数选择敏感的缺点。
摘要由CSDN通过智能技术生成

支持向量机1——间隔和支持向量

支持向量机2——对偶问题

支持向量机4——引入松弛因子

支持向量机3——SMO算法

间隔和支持向量

给定训练样本集D= { ( x 1 , y 1 ) , ( x 2 , y 2 ) , . . . , ( x m , y m ) } , y i ∈ { − 1 , + 1 } \left\{(x_1, y_1),(x_2,y_2),...,(x_m, y_m)\right\},y_i∈\left\{-1, +1\right\} { (x1,y1),(x2,y2),...,(xm,ym)},yi{ 1,+1}。分类学习最基本的思想就是基于训练集D在样本空间中找到一个划分超平面,将不同类别的样本分开,但是能将训练样本分开的划分超平面可能有很多,哪一个是最好的呢?
这里写图片描述

直观上看,应该取找位于两类样本“正中间”的划分超平面,即 B 1 B_1 B1,因为该划分超平面对训练样本局部扰动的“容忍”性最好。例如,由于训练集的局限性或噪声的因素,训练集外的样本可能比上图中训练样本更接近两个类的分割界,这将使许多划分超平面出现错误,而 B 1 B_1 B1的超平面受影响最小。换言之,这个划分超平面所产生的分类结果是最鲁棒的,对未见的示例泛化能力最强。

在样本空间中,划分超平面可通过如下线性方程来描述:
w T x + b = 0 w^Tx+b=0 wTx+b=0
下面我们将其记为( ω \omega ω,b)。样本空间中任意点 x x x到超平面( ω \omega ω,b)的距离可写成
r = ω T x + b ∣ ∣ ω ∣ ∣ r=\frac{\omega^Tx+b}{||\omega||} r=ωωTx+b

这个公式具体可以用点到直线的距离来解释:点P ( x 0 , y 0 x_0,y_0 x0,y0)到直线 A x + B y + c = 0 Ax+By+c=0 Ax+By+c

  • 1
    点赞
  • 4
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值