为什么单螺旋桨飞机会左偏?

某日,在xplane上体验了一把塞斯纳,发现它左偏的还是蛮厉害的,于是想写一篇关于它原理的文章。

螺旋桨的好处很多,但坏处更不少,其中最让人头大的就是螺旋桨的滑流,进动,反作用力矩,气流斜吹问题。而本文要讲的左偏的罪魁祸首就是进动效应。

那么,何为进动?

进动,是一个物理学名词,一个自转的物体受外力作用导致其自转轴绕某一中心旋转,这种现象称为进动,也叫做旋进。

                                                                                                                                   ————来自百度百科

其实进动现象我们从小就在接触,譬如旋转的陀螺虽然斜了,但它还是会好长时间不倒地。

关于进动问题,还有个著名的实验,也最能解释单螺旋桨飞机左偏的问题:

旋转的陀螺虽然受到了重力,但依然不下垂

我们通过讲解这个例子从而揭开进动的”神秘面纱“。我们知道,对于旋转的陀螺,其有个平行于旋转轴的角动量L,而重力相对于支点有个力矩,力矩方向垂直于旋转轴,如下图所示:

                                        

我们可以看到,由于重力矩的存在,L角动量一直往逆时针方向偏,但是,无论怎么偏转,偏转后的角动量还是处于水平的,所以旋转的陀螺虽然受到了重力还是不会掉下来。但有同学要问,按这么分析,由于重力矩始终水平,其引起的偏转一直是水平,那么陀螺的角动量一直是处于在水平面上,那它不就不会下垂了吗,而事实是当陀螺转速越来越小时,陀螺也会慢慢垂下,直至完全下垂,这是为什么呢?

先上图:

                                       

当角动量L很小时,重力矩M就会显得很大,此时角动量方向会很快偏转至与原角动量方向垂直,而且原L越小,这个偏转速率越快,当初始L接近0时,偏转速率就会很大,显然旋转轴是不可能很快转到与L+dL方向平行的(能量守恒),但角动量还是要守恒的呀,所以陀螺就会向下偏,向下偏过程中产生的角动量方向就是大致与L+dL方向相同,这就解释了为什么陀螺最终还是会倒地。

有细心的同学可能老早就发现了,图中的陀螺很像发动机的螺旋桨,完全可照模照样类比过去。是的,由于大多数的螺旋桨都是顺时针方向旋转的,所以与图中的情况完全相同,这也就是为什么单螺旋桨的飞机会自动左偏。我们来感受一下螺旋桨的左偏有多严重:

                                                             以上gif选用xplane11中的塞斯纳录制 

在实际中,驾驶这种单螺旋桨飞机起飞时时,方向舵都要向右偏一点以保持直线方向。

附上实验视频:

                                     ------->   点我观看哦(●ˇ∀ˇ●)

遗传算法优化BP神经网络(GABP)是一种结合了遗传算法(GA)和BP神经网络的优化预测方法。BP神经网络是一种多层前馈神经网络,常用于模式识别和预测问题,但其容易陷入局部最优。而遗传算法是一种模拟自然选择和遗传机制的全局优化方法,能够有效避免局部最优 。GABP算法通过遗传算法优化BP神经网络的权重和阈值,从而提高网络的学习效率和预测精度 。 种群:遗传算法中个体的集合,每个个体代表一种可能的解决方案。 编码:将解决方案转化为适合遗传操作的形式,如二制编码。 适应度函数:用于评估个体解的质量,通常与目标函数相反,目标函数值越小,适应度越高。 选择:根据适应度保留优秀个体,常见方法有轮盘赌选择、锦标赛选择等。 交叉:两个父代个体交换部分基因生成子代。 变异:随机改变个体的部分基因,增加种群多样性。 终止条件:当迭代次数或适应度阈值达到预设值时停止算法 。 初始化种群:随机生成一组神经网络参数(权重和阈值)作为初始种群 。 计算适应度:使用神经网络模型行训练和预测,根据预测误差计算适应度 。 选择操作:根据适应度选择优秀个体 。 交叉操作:对选择的个体行交叉,生成新的子代个体 。 变异操作:对子代行随机变异 。 替换操作:用新生成的子代替换掉一部分旧种群 。 重复步骤2-6,直到满足终止条件 。 适应度函数通常以预测误差为基础,误差越小,适应度越高。常用的误差指标包括均方根误差(RMSE)或平均绝对误差(MAE)等 。 GABP代码中包含了适应度函数的定义、种群的生成、选择、交叉、变异以及训练过程。代码注释详尽,便于理解每个步骤的作用 。 GABP算法适用于多种领域,如时间序列预测、经济预测、工程问题的优化等。它特别适合解决多峰优化问题,能够有效提高预测的准确性和稳定性 。
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值