
先简单的介绍一下给题主一个比较直观的感受。类比一下,你用同样的力在两个不同的物体上作用,质量重的那个物体速度变化慢。同样你用相同的力矩(注意让物体平动的叫做力,让物体转动的叫做力矩)作用在一个物体上想让他转动,不同的物体角速度变化的快慢也是不一样的,影响角速度变化快慢的这个因素就是转动惯量。
按照生活经验来看形状大小体积相同的两个物体,在相同的力矩作用相同的时间后质量重的那个物体角速度改变的较慢。所以可能有一种转动惯量就跟质量差不多这种感觉,实际上形状体积大小完全相同的两个物体也有可能有不同的转动惯量的,关键就在于质量分布的均匀程度是否相同。
举个例子:<img data-rawwidth="1707" data-rawheight="1280" src="https://i-blog.csdnimg.cn/blog_migrate/720e08c37a65a01d59abd522d5beb8b9.jpeg" class="origin_image zh-lightbox-thumb" width="1707" data-original="https://pic3.zhimg.com/cc19bb87012001eb37beb1e026f26fe6_r.jpg">

假设有这样两个物体,质量大小体积完全相同,阴影部分密度比空白部分大。但是你把他们放在坡度相同的坡面上会发现他们滚动的速度变化不一样,右边那个角速度变化更快,这是为什么呢?答案就是因为它的质量集中在转动轴,所以右边那个转动惯量小角速度变化自然就大咯。为什么右边那个转动惯量就小呢?这个我就要来看转动惯量的计算公式了。
<img data-rawwidth="1707" data-rawheight="1280" src="https://pic2.zhimg.com/32e0dcbf2ce98d7b6469d0f0fcb5a155_b.jpg" class="origin_image zh-lightbox-thumb" width="1707" data-original="https://pic2.zhimg.com/32e0dcbf2ce98d7b6469d0f0fcb5a155_r.jpg">如图,J就代表转动惯量,m(i)代表该物体内一个极小的单位(质元)的质量,r(i)代表该质元与转轴距离。也就是说,把这个物体分成很多微小的等份,每一等份的质量乘以距离平方的和就是转动惯量,这样就能解释为什么上图右边那个转动惯量小了,右图的质量分布更集中于转轴,虽然m(i)相同,但是r(i)更小,所以乘积的大小更小,所以转动惯量也更小。
以上就是我个人对于转动惯量的理解,如果有不对的地方欢迎指正。链接:https://www.zhihu.com/question/24218339/answer/105752172
来源:知乎
著作权归作者所有。商业转载请联系作者获得授权,非商业转载请注明出处。
先说转动惯量的由来,先从动能说起大家都知道动能E=(1/2)mv^2,
动能的实际物理意义是:物体相对某个系统(选定一个参考系)运动的实际能量,(P势能实际意义则是物体相对某个系统运动的可能转化为运动的实际能量的大小)。
E=(1/2)mv^2 (v^2为v的2次方)
把v=wr代入上式 (w是角速度,r是半径,在这里对任何物体来说是把物体微分化分为无数个质点,质点与运动整体的重心的距离为r,而再把不同质点积分化得到实际等效的r)
得到E=(1/2)m(wr)^2
由于某一个对象物体在运动当中的本身属性m和r都是不变的,所以把关于m、r的变量用一个变量K代替,
K=mr^2
得到E=(1/2)Kw^2
K就是转动惯量,分析实际情况中的作用相当于牛顿运动平动分析中的质量的作用,都是一般不轻易变的量。
这样分析一个转动问题就可以用能量的角度分析了,而不必拘泥于只从纯运动角度分析转动问题。
为什么变换一下公式就可以从能量角度分析转动问题呢?
1、E=(1/2)Kw^2本身代表研究对象的运动能量
2、之所以用E=(1/2)mv^2不好分析转动物体的问题,是因为其中不包含转动物体的任何转动信息。
3、E=(1/2)mv^2除了不包含转动信息,而且还不包含体现局部运动的信息,因为里面的速度v只代表那个物体的质心运动情况。
4、E=(1/2)Kw^2之所以利于分析,是因为包含了一个物体的所有转动信息,因为转动惯量K=mr^2本身就是一种积分得到的数,更细一些讲就是
综合了转动物体的转动不变的信息的等效结果K=∑ mr^2
所以,就是因为发现了转动惯量,从能量的角度分析转动问题,就有了价值。
首先澄清一个概念,刚体转动惯量在一般意义上并不是相对于某一个转动轴的,而且不是一个标量。它是相对于空间中某一点而言的,而且是一个二阶张量,选定某一套基矢,例如在某笛卡尔坐标中,可以写成:
![]()
的物理意义是 该刚体在沿着该i轴的定轴转动产生的角动量在j轴上的投影
直观一些可以写成矩阵形式:
![]()
另可以证明,转动惯量张量是一个二阶对称张量,即。分量的计算公式为:
![]()
![]()
![]()
![]()
![]()
![]()
(注:连续介质将求和化为积分)
我们所说的相对于某一个转动轴的转动惯量标量的意义是: 该刚体在沿着该转动轴的定轴转动产生的角动量在该转动轴上的投影。假设在笛卡尔坐标系中该对称轴是轴,那么相对于该转动轴的转动惯量标量为转动惯量张量中的
分量。
作者:Giaro
链接:https://www.zhihu.com/question/24218339/answer/128527592
来源:知乎
著作权归作者所有。商业转载请联系作者获得授权,非商业转载请注明出处。