第八章多元函数微分学(连续、可偏导及微分之间的关系)

偏导数的存在仅确保了函数在坐标轴方向上的局部线性行为,而连续性要求在所有方向上当自变量趋于零时因变量也趋于零。偏导数的连续性则意味着函数可微,从而保证了函数在该点的连续性。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

因为偏导数存在,只是“沿坐标轴方向上”能保证当自变量的增量趋向于零时因变量的增量也趋向于零,而连续的定义须是在“任意方向上”要保证自变量变化趋向于零时因变量变化也趋向于零!但“偏导数连续”,可以证明这点可微分,因而函数在这点连续!

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值