因为偏导数存在,只是“沿坐标轴方向上”能保证当自变量的增量趋向于零时因变量的增量也趋向于零,而连续的定义须是在“任意方向上”要保证自变量变化趋向于零时因变量变化也趋向于零!但“偏导数连续”,可以证明这点可微分,因而函数在这点连续!
第八章多元函数微分学(连续、可偏导及微分之间的关系)
于 2023-05-30 22:42:41 首次发布
因为偏导数存在,只是“沿坐标轴方向上”能保证当自变量的增量趋向于零时因变量的增量也趋向于零,而连续的定义须是在“任意方向上”要保证自变量变化趋向于零时因变量变化也趋向于零!但“偏导数连续”,可以证明这点可微分,因而函数在这点连续!