多元函数微分学之偏导数

今天又看了多元函数这一章,看到了自己的笔记,觉得不错分享下。都翻译成了自己的语言,真心反对书上的炫技和文绉绉的话。

  • 偏导数的概念

本质上就是求一元函数的导,只不过是把其他变量看作常数就行了。

在图像上显示可以想象下,例如z=f(x,y)这是一个三维 图形,然后对x求偏导其实就这一点所在的平行于zx平面的切面是投影到z,x上的函数线条的导数,同样的对y求偏导就是放到了zy上看。

备注:看懂后面的再来看下面的、

 这就是为什么有求出一个一阶偏导数连续,但是不能说它一定连续,投在zx上是连续的,但是再zy上呢?可能就是断断续续的。

所以只有所有变量的偏导数都存在时,才能说时可微的。

 

  • 几何意义

自己去看书或者百度,难敲。

  • 多元函数连续、可导、可微之间的关系

   

只对一个变量求导所以只有一排自行车        对多个变量求导这里以z=f(x,y)为例,所以两排

                                                        

连续不一定导                                                                                                   y这边导了,x没导,但他们是一个整体

                                                                         于是有可导不代表连续

导一定连续                                                                                                        连续不能让它导

这个想法挺有意思的,但记住熟练后完全可以丢掉了

 

 

相关推荐

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
©️2022 CSDN 皮肤主题:大白 设计师:CSDN官方博客 返回首页
评论 4

打赏作者

littlebeeee

你的鼓励将是我创作的最大动力

¥2 ¥4 ¥6 ¥10 ¥20
输入1-500的整数
余额支付 (余额:-- )
扫码支付
扫码支付:¥2
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、C币套餐、付费专栏及课程。

余额充值