在 Mask R-CNN 的 Dataset 类有一个函数 draw_mask(),利用三个 for 循环重写mask,造成训练及数据加载的瓶颈,在此对draw_mask函数修改。
我的数据集是用labelme标注的,使用labelme的json_to_dataset.py文件转换获得原始图片、yaml、mask图(8位),此处可能不适用于coco格式的数据集。
我该下面源码的原因有两个:
1、如果要使用数据集增强办法扩张数据集,得到的mask图很可能变成24位的mask图,不能使用原Mask RCNN的代码读取数据
8位图是255种调色板中差异最大的颜色,虽然像素值也看可以表示为(R,G,B),但当24位图转换为8位图时会将相似的颜色转换为同一种映射存储,用原Mask RCNN的代码读取8位图的数据只需要查看每个颜色的映射值(RGB共同映射为一个值)的大小即可,但该代码不能处理24位图,因此加载24位图时get_obj_index()函数就会错误,默认最大的映射值是物体数量,但24位图中不是如此。
因此要处理24位的mask图需要另外的遍历方法,此处获得物体数量的方法就用标签数量代替,所以数据集中不要有空标签。
2、原Mask RCNN的代码读取数据使用了三个for循环,读取数据缓慢
下面代码的思路是构建哈希表存储每种第一次遇到的颜色,遍历mask图的每一个像素点,每个像素点通过一个简单的映射关系获得一个哈希值表示这种颜色,如下:
at_pixel = image[row, col, 0] * 0.1 + image[row, col, 1] + image[row, col, 2] * 10
因为mask已经在load_mask()函数中初始化完了,变成一个(w,h,num_ojb)的0矩阵,所以绘制mask 时只需要将每一个遍历到像素点在mask矩阵中相应的位置绘制出来,即如下:
mask[row, col, hashMap.get(at_pixel)] = 1
完整代码如下:
# 8位深图兼24位深图处理方式
def draw_mask(self, num_obj, mask, image, image_id):
image = cv2.cvtColor(np.asarray(image), cv2.COLOR_BGR2RGB)
hight = image.shape[0]
width = image.shape[1]
hashMap = {0: -1} # 预先将背景像素0映射为-1
k=0
for row in range(hight):
for col in range(width):
if image[row, col,0]==0 and image[row, col, 1] ==0 and image[row, col, 2]==0:
continue
at_pixel = image[row, col, 0] * 0.1 + image[row, col, 1] + image[row, col, 2] * 10
if not hashMap.__contains__(at_pixel): # 若该像素值未存在哈希表则加入哈希表
hashMap[at_pixel]=k
k+=1
mask[row, col, hashMap.get(at_pixel)] = 1 # 将at_pixel对应的层(哈希值),对应位置赋值1
return mask
#重写load_mask
def load_mask(self, image_id):
info = self.image_info[image_id]
img = Image.open(info['mask_path'])
# num_obj = self.get_obj_index(img) # 以最大像素值作为物体数量,0表示背景
labels=[]
labels=self.from_yaml_get_class(image_id)
labels_form=[]
for i in range(len(labels)):
if labels[i].find("particle")!=-1:
labels_form.append("particle")
class_ids = np.array([self.class_names.index(s) for s in labels_form])
# num_obj表示该图实例数(P模式像素值范围0~num_obj,含背景则有num_obj+1层,不含背景则是num_obj层)
# class_ids表示该图标签数(真实实例数,而不含背景)
num_obj = len(class_ids) # num_obj表示有效标签数量 = len(class_ids)表示有效标签
mask = np.zeros([np.shape(img)[0], np.shape(img)[1], num_obj], dtype=np.uint8)
mask = self.draw_mask(num_obj, mask, img, image_id)
return mask, class_ids.astype(np.int32)
本代码对于实例越多的mask,加速读取数据的效果越明显,但是我训练时的速度还是很慢,猜测原因是CUP在调整框的位置时计算量太大,又不能用GPU计算而导致的,如果有知道其他训练太慢的原因和解决方法,请大佬告知!