线性代数对于线性相关的几何理解

目录

向量

基向量

张成空间

向量的加减与数乘

加减

数乘

线性相关

结论


向量

首先我们画出一条x轴与一条y轴,代表一个二维平面。那么我们定义向量(i,j)就是以原点为起

点,点(i,j)为终点的一条有向线段。

基向量

我们描述任何一个向量都要依赖于我们选择的基向量。一般在二维xy坐标系中,我们都是选取(1

,0)和(0,1)两个向量作为基向量 i 和 j 。

张成空间

所有可以表示给定向量线性组合的向量的集合叫给定向量张成的空间。

比如给定 \vec{i}\vec{j}两个向量(不共线),那么 \vec{m}=a\vec{i}+b\vec{j} 这个向量的集合即两向量的张成空间。

向量的加减与

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

四円

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值