对于卷积的粗浅理解

1 . 简述

在复变函数这门课的时候,第一次看到卷积(convolution)这个词,一听就觉得很高级,记住公式会用这个公式就这么过去了。然后在深度学习中再次看到了这个概念,也经常使用它进行图像处理,觉得得稍微研究这个概念,就有了这篇blog。

2 . 数学解释

在这里插入图片描述
这是教科书上对convolution的解释,是不是看的糊里糊涂的,就看出来是一个从负无穷到正无穷的积分。
但我们可以这么想,卷积也是一种数学运算,而能被定义成一个数学运算的,首先它得是抽象与符号化的,其次它得在生活生产中有着广泛的应用。
其实当一个系统输入不稳定但是输出稳定的时候,我们可以用卷积来求其系统存量。

3 . 通俗解释

举个栗子
从前有个人叫小明,他非常能吃,几乎每时每刻都在吃,所以他的实物摄取量如下图曲线所示
在这里插入图片描述
可以明显看出小明很能吃,且每时每刻进食的数量都在变。
下图表示小明的消化速度
在这里插入图片描述
食物剩余比例也是个曲线
接下来我们随便找个点,进行分析,比如求解16点胃中剩余的食物是多少。
我们先用离散的思想来看,如果小明在10点喝了杯豆浆,12点吃了个面包,14点吃了块巧克力,那么他在16点胃中的食物剩余量为
f(10)g(16-10)+f(12)g(16-12)+f(14)g(16-14)
这很好理解吧。
但实际上呢,小明是每时每刻都在吃东西的,所以应该是个积分,而不简简单单是个求和,所以应该是(dbq真的不会打积分上下限)
在这里插入图片描述

对比一下上面剑桥大学给的公式,是不是差不多,就有一点小小的不一样,就是x-t和t-x的区别
诶,这个就和卷积名字有关
在这里插入图片描述
在这里插入图片描述
你看,这不就是卷起来了嘛
那这就是卷积计算了。

4 . 图像处理

要说卷积运算最多的运用,就是图像处理了吧。
在这里插入图片描述
直观看来就是下图
在这里插入图片描述
但是这么看总觉得拧着,因为f()和g()并不是直接对应的关系,于是把g()函数旋转180度,如下图
在这里插入图片描述
这样就是完全一一对应的关系,这个3*3的矩阵也可以称之为卷积核了。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

WFForstar

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值