Pytorch loss相关学习

本文详细介绍了在分类问题中常用的交叉熵损失函数,包括CrossEntropyLoss的基本概念及其表达式,并重点剖析了binary_cross_entropy与binary_cross_entropy_with_logits的区别,后者内部包含计算logits操作。通过实例帮助理解这两者在实际应用中的选择与优化。
摘要由CSDN通过智能技术生成

一 常用损失函数

CrossEntropyLoss

分类问题中,交叉熵函数是比较常用也是比较基础的损失函数。

  • 表达公式
    在这里插入图片描述

  • 参考链接:https://blog.csdn.net/ft_sunshine/article/details/92074842

binary_cross_entropy 和 binary_cross_entropy_with_logits

二值交叉熵损失,输入可以通过sigmoid/softmax 可以完成二分类和多分类。

  • 表达公式
    在这里插入图片描述

  • 两者的区别
    有一个(类)损失函数名字中带了with_logits. 而这里的logits指的是,该损失函数已经内部自带了计算logit的操作,无需在传入给这个loss函数之前手动使用sigmoid/softmax将之前网络的输入映射到[0,1]之间

在这里插入图片描述

  • 参考链接:https://blog.csdn.net/u010630669/article/details/105599067
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

五小白

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值